
David Beyer

Perspectives from Leading Practitioners

The Future of
Machine Intelligence

http://strataconf.com?cmp=pd-data-confreg-lp-na_free_report_ad/

David Beyer

The Future of Machine
Intelligence

Perspectives from Leading Practitioners

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-491-93230-8

[LSI]

The Future of Machine Intelligence
by David Beyer

Copyright © 2016 O’Reilly Media Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safaribooksonline.com). For
more information, contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Editor: Shannon Cutt
Production Editor: Nicole Shelby
Interior Designer: David Futato

Cover Designer: Randy Comer
Illustrator: Rebecca Demarest

February 2016: First Edition

Revision History for the First Edition
2016-02-29: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. The Future of
Machine Intelligence, the cover image, and related trade dress are trademarks of
O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the author disclaim all responsibility for errors or omissions, including without limi‐
tation responsibility for damages resulting from the use of or reliance on this work.
Use of the information and instructions contained in this work is at your own risk. If
any code samples or other technology this work contains or describes is subject to
open source licenses or the intellectual property rights of others, it is your responsi‐
bility to ensure that your use thereof complies with such licenses and/or rights.

http://safaribooksonline.com

Table of Contents

Introduction. vii

1. Anima Anandkumar: Learning in Higher Dimensions. 1

2. Yoshua Bengio: Machines That Dream. 9

3. Brendan Frey: Deep Learning Meets Genome Biology. 17

4. Risto Miikkulainen: Stepping Stones and Unexpected Solutions in
Evolutionary Computing. 25

5. Benjamin Recht: Machine Learning in the Wild. 31

6. Daniela Rus: The Autonomous Car As a Driving Partner. 37

7. Gurjeet Singh: Using Topology to Uncover the Shape of Your Data. 43

8. Ilya Sutskever: Unsupervised Learning, Attention, and
Other Mysteries. 49

9. Oriol Vinyals: Sequence-to-Sequence Machine Learning. 55

10. Reza Zadeh: On the Evolution of Machine Learning. 61

v

Introduction

Machine intelligence has been the subject of both exuberance and
skepticism for decades. The promise of thinking, reasoning
machines appeals to the human imagination, and more recently, the
corporate budget. Beginning in the 1950s, Marvin Minksy, John
McCarthy and other key pioneers in the field set the stage for today’s
breakthroughs in theory, as well as practice. Peeking behind the
equations and code that animate these peculiar machines, we find
ourselves facing questions about the very nature of thought and
knowledge. The mathematical and technical virtuosity of achieve‐
ments in this field evoke the qualities that make us human: Every‐
thing from intuition and attention to planning and memory. As
progress in the field accelerates, such questions only gain urgency.

Heading into 2016, the world of machine intelligence has been bus‐
tling with seemingly back-to-back developments. Google released its
machine learning library, TensorFlow, to the public. Shortly there‐
after, Microsoft followed suit with CNTK, its deep learning frame‐
work. Silicon Valley luminaries recently pledged up to one billion
dollars towards the OpenAI institute, and Google developed soft‐
ware that bested Europe’s Go champion. These headlines and ach‐
ievements, however, only tell a part of the story. For the rest, we
should turn to the practitioners themselves. In the interviews that
follow, we set out to give readers a view to the ideas and challenges
that motivate this progress.

We kick off the series with Anima Anandkumar’s discussion of ten‐
sors and their application to machine learning problems in high-
dimensional space and non-convex optimization. Afterwards,
Yoshua Bengio delves into the intersection of Natural Language Pro‐

vii

cessing and deep learning, as well as unsupervised learning and rea‐
soning. Brendan Frey talks about the application of deep learning to
genomic medicine, using models that faithfully encode biological
theory. Risto Miikkulainen sees biology in another light, relating
examples of evolutionary algorithms and their startling creativity.
Shifting from the biological to the mechanical, Ben Recht explores
notions of robustness through a novel synthesis of machine intelli‐
gence and control theory. In a similar vein, Daniela Rus outlines a
brief history of robotics as a prelude to her work on self-driving cars
and other autonomous agents. Gurjeet Singh subsequently brings
the topology of machine learning to life. Ilya Sutskever recounts the
mysteries of unsupervised learning and the promise of attention
models. Oriol Vinyals then turns to deep learning vis-a-vis sequence
to sequence models and imagines computers that generate their own
algorithms. To conclude, Reza Zadeh reflects on the history and
evolution of machine learning as a field and the role Apache Spark
will play in its future.

It is important to note the scope of this report can only cover so
much ground. With just ten interviews, it far from exhaustive:
Indeed, for every such interview, dozens of other theoreticians and
practitioners successfully advance the field through their efforts and
dedication. This report, its brevity notwithstanding, offers a glimpse
into this exciting field through the eyes of its leading minds.

viii | Introduction

CHAPTER 1

Anima Anandkumar: Learning in
Higher Dimensions

Anima Anandkumar is on the faculty of the EECS Department at the
University of California Irvine. Her research focuses on high-
dimensional learning of probabilistic latent variable models and the
design and analysis of tensor algorithms.

Key Takeaways
• Modern machine learning involves large amounts of data and a

large number of variables, which makes it a high dimensional
problem.

• Tensor methods are effective at learning such complex high
dimensional problems, and have been applied in numerous
domains, from social network analysis, document categoriza‐
tion, genomics, and towards understanding the neuronal
behavior in the brain.

• As researchers continue to grapple with complex, highly-
dimensional problems, they will need to rely on novel techni‐
ques in non-convex optimization, in the many cases where
convex techniques fall short.

1

Let’s start with your background.

I have been fascinated with mathematics since my childhood—its
uncanny ability to explain the complex world we live in. During my
college days, I realized the power of algorithmic thinking in com‐
puter science and engineering. Combining these, I went on to com‐
plete a Ph.D. at Cornell University, then a short postdoc at MIT
before moving to the faculty at UC Irvine, where I’ve spent the past
six years.

During my Ph.D., I worked on the problem of designing efficient
algorithms for distributed learning. More specifically, when multiple
devices or sensors are collecting data, can we design communication
and routing schemes that perform “in-network” aggregation to
reduce the amount of data transported, and yet, simultaneously, pre‐
serve the information required for certain tasks, such as detecting an
anomaly? I investigated these questions from a statistical viewpoint,
incorporating probabilistic graphical models, and designed algo‐
rithms that significantly reduce communication requirements. Ever
since, I have been interested in a range of machine learning prob‐
lems.

Modern machine learning naturally occurs in a world of higher
dimensions, generating lots of multivariate data in the process,
including a large amount of noise. Searching for useful information
hidden in this noise is challenging; it is like the proverbial needle in
a haystack.

The first step involves modeling the relationships between the hid‐
den information and the observed data. Let me explain this with an
example. In a recommender system, the hidden information repre‐
sents users’ unknown interests and the observed data consist of
products they have purchased thus far. If a user recently bought a
bike, she is interested in biking/outdoors, and is more likely to buy
biking accessories in the near future. We can model her interest as a
hidden variable and infer it from her buying pattern. To discover
such relationships, however, we need to observe a whole lot of buy‐
ing patterns from lots of users—making this problem a big data one.

My work currently focuses on the problem of efficiently training
such hidden variable models on a large scale. In such an unsuper‐
vised approach, the algorithm automatically seeks out hidden fac‐
tors that drive the observed data. Machine learning researchers, by

2 | Chapter 1: Anima Anandkumar: Learning in Higher Dimensions

and large, agree this represents one of the key unsolved challenges in
our field.

I take a novel approach to this challenge and demonstrate how ten‐
sor algebra can unravel these hidden, structured patterns without
external supervision. Tensors are higher dimensional extensions of
matrices. Just as matrices can represent pairwise correlations, ten‐
sors can represent higher order correlations (more on this later). My
research reveals that operations on higher order tensors can be used
to learn a wide range of probabilistic latent variable models
efficiently.

What are the applications of your method?

We have shown applications in a number of settings. For example,
consider the task of categorizing text documents automatically
without knowing the topics a priori. In such a scenario, the topics
themselves constitute hidden variables that must be gleaned from
the observed text. A possible solution might be to learn the topics
using word frequency, but this naive approach doesn’t account for
the same word appearing in multiple contexts.

What if, instead, we look at the co-occurrence of pairs of words,
which is a more robust strategy than single word frequencies. But
why stop at pairs? Why not examine the co-occurrences of triplets of
words and so on into higher dimensions? What additional informa‐
tion might these higher order relationships reveal? Our work has
demonstrated that uncovering hidden topics using the popular
Latent Dirichlet Allocation (LDA) requires third-order relation‐
ships; pairwise relationships are insufficient.

The above intuition is broadly applicable. Take networks for exam‐
ple. You might try to discern hidden communities by observing the
interaction of their members, examples of which include friendship
connections in social networks, buying patterns in recommender
systems or neuronal connections in the brain. My research reveals
the need to investigate at least at the level of “friends of friends” or
higher order relationships to uncover hidden communities.
Although such functions have been used widely before, we were the
first to show the precise information they contain and how to
extract them in a computationally efficient manner.

We can extend the notion of hidden variable models even further.
Instead of trying to discover one hidden layer, we look to construct a

Anima Anandkumar: Learning in Higher Dimensions | 3

hierarchy of hidden variables instead. This approach is better suited
to a certain class of applications, including, for example, modeling
the evolutionary tree of species or understanding the hierarchy of
disease occurrence in humans. The goal in this case is to learn both
the hierarchical structure of the latent variables, as well as the
parameters that quantify the effect of the hidden variables on the
given observed data.

The resulting structure reveals the hierarchical groupings of the
observed variables at the leaves and the parameters quantify the
“strength” of the group effect on the observations at the leaf nodes.
We then simplify this to finding a hierarchical tensor decomposi‐
tion, for which we have developed efficient algorithms.

So why are tensors themselves crucial in these applications?

First, I should note these tensor methods aren’t just a matter of theo‐
retical interest; they can provide enormous speedups in practice and
even better accuracy, evidence of which we’re seeing already. Kevin
Chen from Rutgers University gave a compelling talk at the recent
NIPS workshop on the superiority of these tensor methods in
genomics: It offered better biological interpretation and yielded a
100x speedup when compared to the traditional expectation maxi‐
mization (EM) method.

Tensor methods are so effective because they draw on highly opti‐
mized linear algebra libraries and can run on modern systems for
large scale computation. In this vein, my student, Furong Huang,
has deployed tensor methods on Spark, and it runs much faster than
the variational inference algorithm, the default for training proba‐
bilistic models. All in all, tensor methods are now embarrassingly
parallel and easy to run at large scale on multiple hardware plat‐
forms.

Is there something about tensor math that makes it so useful for these high
dimensional problems?

Tensors model a much richer class of data, allowing us to grapple
with multirelational data– both spatial and temporal. The different
modes of the tensor, or the different directions in the tensor, repre‐
sent different kinds of data.

At its core, the tensor describes a richer algebraic structure than the
matrix and can thereby encode more information. For context,
think of matrices as representing rows and columns – a two-

4 | Chapter 1: Anima Anandkumar: Learning in Higher Dimensions

dimensional array, in other words. Tensors extend this idea to multi‐
dimensional arrays.

A matrix, for its part, is more than just columns and rows. You can
sculpt it to your purposes though the math of linear operations, the
study of which is called linear algebra. Tensors build on these malle‐
able forms and their study, by extension, is termed multilinear
algebra.

Given such useful mathematical structures, how can we squeeze
them for information? Can we design and analyze algorithms for
tensor operations? Such questions require a new breed of proof
techniques built around non-convex optimization.

What do you mean by convex and non-convex optimization?

The last few decades have delivered impressive progress in convex
optimization theory and technique. The problem, unfortunately, is
that most optimization problems are not by their nature convex.

Let me expand on the issue of convexity by example. Let’s say you’re
minimizing a parabolic function in one dimension: if you make a
series of local improvements (at any starting point in the parabola)
you are guaranteed to reach the best possible value. Thus, local
improvements lead to global improvements. This property even
holds for convex problems in higher dimensions. Computing local
improvements is relatively easy using techniques such as gradient
descent.

The real world, by contrast, is more complicated than any parabola.
It contains a veritable zoo of shapes and forms. This translates to
parabolas far messier than their ideal counterparts: Any optimiza‐
tion algorithm that makes local improvements will inevitably
encounter ridges, valleys and flat surfaces; it is constantly at risk of
getting stuck in a valley or some other roadblock—never reaching
its global optimum.

As the number of variables increases, the complexity of these ridges
and valleys explodes. In fact, there can be an exponential number of
points where algorithms based on local steps, such as gradient
descent, become stuck. Most problems, including the ones on which
I am working, encounter this hardness barrier.

Anima Anandkumar: Learning in Higher Dimensions | 5

How does your work address the challenge of non-convex optimization?

The traditional approach to machine learning has been to first
define learning objectives and then to use standard optimization
frameworks to solve them. For instance, when learning probabilistic
latent variable models, the standard objective is to maximize likeli‐
hood, and then to use the expectation maximization (EM) algo‐
rithm, which conducts a local search over the objective function.
However, there is no guarantee that EM will arrive at a good solu‐
tion. As it searches over the objective function, what may seem like a
global optimum might merely be a spurious local one. This point
touches on the broader difficulty with machine learning algorithm
analysis, including backpropagation in neural networks: we cannot
guarantee where the algorithm will end up or if it will arrive at a
good solution.

To address such concerns, my approach looks for alternative, easy to
optimize, objective functions for any given task. For instance, when
learning latent variable models, instead of maximizing the likeli‐
hood function, I have focused on the objective of finding a good
spectral decomposition of matrices and tensors, a more tractable
problem given the existing toolset. That is to say, the spectral
decomposition of the matrix is the standard singular-value decom‐
position (SVD), and we already possess efficient algorithms to com‐
pute the best such decomposition.

Since matrix problems can be solved efficiently despite being non-
convex, and given matrices are special cases of tensors, we decided
on a new research direction: Can we design similar algorithms to
solve the decomposition of tensors? It turns out that tensors are
much more difficult to analyze and can be NP-hard. Given that, we
took a different route and sought to characterize the set of condi‐
tions under which such a decomposition can be solved optimally.
Luckily, these conditions turn out to be fairly mild in the context of
machine learning.

How do these tensor methods actually help solve machine learning
problems? At first glance, tensors may appear irrelevant to such
tasks. Making the connection to machine learning demands one
additional idea, that of relationships (or moments). As I noted ear‐
lier, we can use tensors to represent higher order relationships
among variables. And by looking at these relationships, we can learn
the parameters of the latent variable models efficiently.

6 | Chapter 1: Anima Anandkumar: Learning in Higher Dimensions

So you’re able to bring a more elegant representation to modeling higher-
dimensional data. Is this generally applicable in any form of machine
learning?

I feel like we have only explored the tip of the iceberg. We can use
tensor methods for training a wide class of latent variable models,
such as modeling topics in documents, communities in networks,
Gaussian mixtures, mixtures of ranking models and so on. These
models, on their face, seem unrelated. Yet, they are unified by the
ability to translate statistical properties, such as the conditional
independence of variables, into algebraic constraints on tensors. In
all these models, suitable moment tensors (usually the third or
fourth order correlations) are decomposed to estimate the model
parameters consistently. Moreover, we can prove that this requires
only a small (precisely, a low-order polynomial) amount of samples
and computation to work well.

So far, I discussed using tensors for unsupervised learning. We have
also demonstrated that tensor methods provide guarantees for train‐
ing neural networks, which sit in the supervised domain. We are
currently tackling even harder questions such as reinforcement
learning, where the learner interacts with and possibly changes the
environment he/she is trying to understand. In general, I believe
using higher order relationships and tensor algebraic techniques
holds promise across a range of challenging learning problems.

What’s next on the theoretical side of machine learning research?

These are exciting times to be a researcher in machine learning.
There is a whole spectrum of problems ranging from fundamental
research to real-world at scale deployment. I have been pursuing
research from an interdisciplinary lens; by combining tensor algebra
with probabilistic modeling, we have developed a completely new
set of learning algorithms with strong theoretical guarantees. I
believe making such non-obvious connections is crucial towards
breaking the hardness barriers in machine learning.

Anima Anandkumar: Learning in Higher Dimensions | 7

CHAPTER 2

Yoshua Bengio: Machines
That Dream

Yoshua Bengio is a professor with the department of computer science
and operations research at the University of Montreal, where he is
head of the Machine Learning Laboratory (MILA) and serves as the
Canada Research Chair in statistical learning algorithms. The goal of
his research is to understand the principles of learning that yield intel‐
ligence.

Key Takeaways
• Natural language processing has come a long way since its

inception. Through techniques such as vector representation
and custom deep neural nets, the field has taken meaningful
steps towards real language understanding.

• The language model endorsed by deep learning breaks with the
Chomskyan school and harkens back to Connectionism, a field
made popular in the 1980s.

• In the relationship between neuroscience and machine learn‐
ing, inspiration flows both ways, as advances in each respective
field shine new light on the other.

• Unsupervised learning remains one of the key mysteries to be
unraveled in the search for true AI. A measure of our progress

9

towards this goal can be found in the unlikeliest of places—
inside the machine’s dreams.

Let’s start with your background.

I have been researching neural networks since the 80s. I got my
Ph.D. in 1991 from McGill University, followed by a postdoc at MIT
with Michael Jordan. Afterward, I worked with Yann LeCun, Patrice
Simard, Léon Bottou, Vladimir Vapnik, and others at Bell Labs and
returned to Montreal, where I’ve spent most my life.

As fate would have it, neural networks fell out of fashion in the
mid-90s, re-emerging only in the last decade. Yet throughout that
period, my lab, alongside a few other groups pushed forward. And
then, in a breakthrough around 2005 or 2006, we demonstrated the
first way to successfully train deep neural nets, which had resisted
previous attempts.

Since then, my lab has grown into its own institute with five or six
professors and totaling about 65 researchers. In addition to advanc‐
ing the area of unsupervised learning, over the years, our group has
contributed to a number of domains, including, for example, natural
language, as well as recurrent networks, which are neural networks
designed specifically to deal with sequences in language and other
domains.

At the same time, I’m keenly interested in the bridge between neuro‐
science and deep learning. Such a relationship cuts both ways. On
the one hand, certain currents in AI research dating back to the very
beginning of AI in the 50s, draw inspiration from the human mind.
Yet ever since neural networks have re-emerged in force, we can flip
this idea on its head and look to machine learning instead as an
inspiration to search for high-level theoretical explanations for
learning in the brain.

Let’s move on to natural language. How has the field evolved?

I published my first big paper on natural language processing in
2000 at the NIPS Conference. Common wisdom suggested the state-
of-the-art language processing approaches of this time would never
deliver AI because it was, to put it bluntly, too dumb. The basic tech‐
nique in vogue at the time was to count how many times, say, a word
is followed by another word, or a sequence of three words come

10 | Chapter 2: Yoshua Bengio: Machines That Dream

together—so as to predict the next word or translate a word or
phrase.

Such an approach, however, lacks any notion of meaning, preclud‐
ing its application to highly complex concepts and generalizing cor‐
rectly to sequences of words that had not been previously seen. With
this in mind, I approached the problem using neural nets, believing
they could overcome the “curse of dimensionality” and proposed a
set of approaches and arguments that have since been at the heart of
deep learning’s theoretical analysis.

This so-called curse speaks to one of fundamental challenges in
machine learning. When trying to predict something using an abun‐
dance of variables, the huge number of possible combinations of val‐
ues they can take makes the problem exponentially hard. For
example, if you consider a sequence of three words and each word is
one out of a vocabulary of 100,000, how many possible sequences
are there? 100,000 to the cube, which is much more than the num‐
ber of such sequences a human could ever possibly read. Even
worse, if you consider sequences of 10 words, which is the scope of a
typical short sentence, you’re looking at 100,000 to the power of 10,
an unthinkably large number.

Thankfully, we can replace words with their representations, other‐
wise known as word vectors, and learn these word vectors. Each
word maps to a vector, which itself is a set of numbers correspond‐
ing to automatically learned attributes of the word; the learning sys‐
tem simultaneously learns using these attributes of each word, for
example to predict the next word given the previous ones or to pro‐
duce a translated sentence. Think of the set of word vectors as a big
table (number of words by number of attributes) where each word
vector is given by a few hundred attributes. The machine ingests
these attributes and feeds them as an input to a neural net. Such a
neural net looks like any other traditional net except for its many
outputs, one per word in the vocabulary. To properly predict the
next word in a sentence or determine the correct translation, such
networks might be equipped with, say, 100,000 outputs.

This approach turned out to work really well. While we started test‐
ing this at a rather small scale, over the following decade, research‐
ers have made great progress towards training larger and larger
models on progressively larger datasets. Already, this technique is
displacing a number of well-worn NLP approaches, consistently

Yoshua Bengio: Machines That Dream | 11

besting state-of-the-art benchmarks. More broadly, I believe we’re in
the midst of a big shift in natural language processing, especially as
it regards semantics. Put another way, we’re moving towards natural
language understanding, especially with recent extensions of recur‐
rent networks that include a form of reasoning.

Beyond its immediate impact in NLP, this work touches on other,
adjacent topics in AI, including how machines answer questions and
engage in dialog. As it happens, just a few weeks ago, DeepMind
published a paper in Nature on a topic closely related to deep learn‐
ing for dialogue. Their paper describes a deep reinforcement learn‐
ing system that beat the European Go champion. By all accounts, Go
is a very difficult game, leading some to predict it would take deca‐
des before computers could face off against professional players.
Viewed in a different light, a game like Go looks a lot like a conver‐
sation between the human player and the machine. I’m excited to
see where these investigations lead.

How does deep learning accord with Noam Chomsky’s view of language?

It suggests the complete opposite. Deep learning relies almost com‐
pletely on learning through data. We of course design the neural
net’s architecture, but for the most part, it relies on data and lots of
it. And whereas Chomsky focused on an innate grammar and the
use of logic, deep learning looks to meaning. Grammar, it turns out,
is the icing on the cake. Instead, what really matters is our intention:
it’s mostly the choice of words that determines what we mean, and
the associated meaning can be learned. These ideas run counter to
the Chomskyan school.

Is there an alternative school of linguistic thought that offers a better fit?

In the ’80s, a number of psychologists, computer scientists and lin‐
guists developed the Connectionist approach to cognitive psychol‐
ogy. Using neural nets, this community cast a new light on human
thought and learning, anchored in basic ingredients from neuro‐
science. Indeed, backpropagation and some of the other algorithms
in use today trace back to those efforts.

Does this imply that early childhood language development or other func-
tions of the human mind might be structurally similar to backprop or other
such algorithms?

12 | Chapter 2: Yoshua Bengio: Machines That Dream

Researchers in our community sometimes take cues from nature
and human intelligence. As an example, take curriculum learning.
This approach turns out to facilitate deep learning, especially for
reasoning tasks. In contrast, traditional machine learning stuffs all
the examples in one big bag, making the machine examine examples
in a random order. Humans don’t learn this way. Often with the
guidance of a teacher, we start with learning easier concepts and
gradually tackle increasingly difficult and complex notions, all the
while building on our previous progress.

From an optimization point of view, training a neural net is difficult.
Nevertheless, by starting small and progressively building on layers
of difficulty, we can solve the difficult tasks previously considered
too difficult to learn.

Your work includes research around deep learning architectures. Can you
touch on how those have evolved over time?

We don’t necessarily employ the same kind of nonlinearities as we
used in the ’80s through the first decade of 2000. In the past, we
relied on, for example, the hyperbolic tangent, which is a smoothly
increasing curve that saturates for both small and large values, but
responds to intermediate values. In our work, we discovered that
another nonlinearity, hiding in plain sight, the rectifier, allowed us
to train much deeper networks. This model draws inspiration from
the human brain, which fits the rectifier more closely than the
hyperbolic tangent. Interestingly, the reason it works as well as it
does remains to be clarified. Theory often follows experiment in
machine learning.

What are some of the other challenges you hope to address in the coming
years?

In addition to understanding natural language, we’re setting our
sights on reasoning itself. Manipulating symbols, data structures and
graphs used to be realm of classical AI (sans learning), but in just
the past few years, neural nets re-directed to this endeavor. We’ve
seen models that can manipulate data structures like stacks and
graphs, use memory to store and retrieve objects and work through
a sequence of steps, potentially supporting dialog and other tasks
that depend on synthesizing disparate evidence.

In addition to reasoning, I’m very interested in the study of unsu‐
pervised learning. Progress in machine learning has been driven, to

Yoshua Bengio: Machines That Dream | 13

a large degree, by the benefit of training on massive data sets with
millions of labeled examples, whose interpretation has been tagged
by humans. Such an approach doesn’t scale: We can’t realistically
label everything in the world and meticulously explain every last
detail to the computer. Moreover, it’s simply not how humans learn
most of what they learn.

Of course, as thinking beings, we offer and rely on feedback from
our environment and other humans, but it’s sparse when compared
to your typical labeled dataset. In abstract terms, a child in the world
observes her environment in the process of seeking to understand it
and the underlying causes of things. In her pursuit of knowledge,
she experiments and asks questions to continually refine her internal
model of her surroundings.

For machines to learn in a similar fashion, we need to make more
progress in unsupervised learning. Right now, one of the most excit‐
ing areas in this pursuit centers on generating images. One way to
determine a machine’s capacity for unsupervised learning is to
present it with many images, say, of cars, and then to ask it to
“dream” up a novel car model—an approach that’s been shown to
work with cars, faces, and other kinds of images. However, the visual
quality of such dream images is rather poor, compared to what com‐
puter graphics can achieve.

If such a machine responds with a reasonable, non-facsimile output
to such a request to generate a new but plausible image, it suggests
an understanding of those objects a level deeper: In a sense, this
machine has developed an understanding of the underlying explan‐
ations for such objects.

You said you ask the machine to dream. At some point, it may actually be a
legitimate question to ask…do androids dream of electric sheep, to quote
Philip K. Dick?

Right. Our machines already dream, but in a blurry way. They’re not
yet crisp and content-rich like human dreams and imagination, a
facility we use in daily life to imagine those things which we haven’t
actually lived. I am able to imagine the consequence of taking the
wrong turn into oncoming traffic. I thankfully don’t need to actually
live through that experience to recognize its danger. If we, as
humans, could solely learn through supervised methods, we would
need to explicitly experience that scenario and endless permutations
thereof. Our goal with research into unsupervised learning is to help

14 | Chapter 2: Yoshua Bengio: Machines That Dream

the machine, given its current knowledge of the world reason and
predict what will probably happen in its future. This represents a
critical skill for AI.

It’s also what motivates science as we know it. That is, the methodi‐
cal approach to discerning causal explanations for given observa‐
tions. In other words, we’re aiming for machines that function like
little scientists, or little children. It might take decades to achieve
this sort of true autonomous unsupervised learning, but it’s our
current trajectory.

Yoshua Bengio: Machines That Dream | 15

CHAPTER 3

Brendan Frey: Deep Learning
Meets Genome Biology

Brendan Frey is a co-founder of Deep Genomics, a professor at the
University of Toronto and a co-founder of its Machine Learning
Group, a senior fellow of the Neural Computation program at the
Canadian Institute for Advanced Research and a fellow of the Royal
Society of Canada. His work focuses on using machine learning to
understand the genome and to realize new possibilities in genomic
medicine.

Key Takeaways
• The application of deep learning to genomic medicine is off to

a promising start; it could impact diagnostics, intensive care,
pharmaceuticals and insurance.

• The “genotype-phenotype divide”—our inability to connect
genetics to disease phenotypes—is preventing genomics from
advancing medicine to its potential.

• Deep learning can bridge the genotype-phenotype divide, by
incorporating an exponentially growing amount of data, and
accounting for the multiple layers of complex biological pro‐
cesses that relate the genotype to the phenotype.

• Deep learning has been successful in applications where
humans are naturally adept, such as image, text, and speech
understanding. The human mind, however, isn’t intrinsically

17

designed to understand the genome. This gap necessitates the
application of “super-human intelligence” to the problem.

• Efforts in this space must account for underlying biological
mechanisms; overly simplistic, “black box” approaches will
drive only limited value.

Let’s start with your background.

I completed my Ph.D. with Geoff Hinton in 1997. We co-authored
one of the first papers on deep learning, published in Science in
1995. This paper was a precursor to much of the recent work on
unsupervised learning and autoencoders. Back then, I focused on
computational vision, speech recognition and text analysis. I also
worked on message passing algorithms in deep architectures. In
1997, David MacKay and I wrote one of the first papers on “loopy
belief propagation” or the “sum-product algorithm,” which appeared
in the top machine learning conference, the Neural Information
Processing Systems Conference, or NIPS.

In 1999, I became a professor of Computer Science at the University
of Waterloo. Then in 2001, I joined the University of Toronto and,
along with several other professors, co-founded the Machine Learn‐
ing Group. My team studied learning and inference in deep archi‐
tectures, using algorithms based on variational methods, message
passing and Markov chain Monte Carlo (MCMC) simulation. Over
the years, I’ve taught a dozen courses on machine learning and
Bayesian networks to over a thousand students in all.

In 2005, I became a senior fellow in the Neural Computation pro‐
gram of the Canadian Institute for Advanced Research, an amazing
opportunity to share ideas and collaborate with leaders in the field,
such as Yann LeCun, Yoshua Bengio, Yair Weiss, and the Director,
Geoff Hinton.

What got you started in genomics?

It’s a personal story. In 2002, a couple years into my new role as a
professor at the University of Toronto, my wife at the time and I
learned that the baby she was carrying had a genetic problem. The
counselor we met didn’t do much to clarify things: she could only
suggest that either nothing was wrong, or that, on the other hand,
something may be terribly wrong. That experience, incredibly diffi‐
cult for many reasons, also put my professional life into sharp relief:

18 | Chapter 3: Brendan Frey: Deep Learning Meets Genome Biology

the mainstay of my work, say, in detecting cats in YouTube videos,
seemed less significant—all things considered.

I learned two lessons: first, I wanted to use machine learning to
improve the lives of hundreds of millions of people facing similar
genetic challenges. Second, reducing uncertainty is tremendously
valuable: Giving someone news, either good or bad, lets them plan
accordingly. In contrast, uncertainty is usually very difficult to pro‐
cess.

With that, my research goals changed in kind. Our focus pivoted to
understanding how the genome works using deep learning.

Why do you think machine learning plus genome biology is important?

Genome biology, as a field, is generating torrents of data. You will
soon be able to sequence your genome using a cell-phone size device
for less than a trip to the corner store. And yet the genome is only
part of the story: there exists huge amounts of data that describe
cells and tissues. We, as humans, can’t quite grasp all this data: We
don’t yet know enough biology. Machine learning can help solve the
problem.

At the same time, others in the machine learning community recog‐
nize this need. At last year’s premier conference on machine learn‐
ing, four panelists, Yann LeCun, Director of AI at Facebook, Demis
Hassabis, co-founder of DeepMind, Neil Lawrence, Professor at the
University of Sheffield, and Kevin Murphy from Google, identified
medicine as the next frontier for deep learning.

To succeed, we need to bridge the “genotype-phenotype divide.”
Genomic and phenotype data abound. Unfortunately, the state-of-
the-art in meaningfully connecting these data results in a slow,
expensive and inaccurate process of literature searches and detailed
wetlab experiments. To close the loop, we need systems that can
determine intermediate phenotypes called “molecular phenotypes,”
which function as stepping stones from genotype to disease pheno‐
type. For this, machine learning is indispensable.

As we speak, there’s a new generation of young researchers using
machine learning to study how genetics impact molecular pheno‐
types, in groups such as Anshul Kundaje’s at Stanford. To name just
a few of these upcoming leaders: Andrew Delong, Babak Alipanahi
and David Kelley of the University of Toronto and Harvard, who
study protein-DNA interactions; Jinkuk Kim of MIT who studies

Brendan Frey: Deep Learning Meets Genome Biology | 19

gene repression; and Alex Rosenberg, who is developing experimen‐
tal methods for examining millions of mutations and their influence
on splicing at the University of Washington. In parallel, I think it’s
exciting to see an emergence of startups working in this field, such
as Atomwise, Grail and others.

What was the state of the genomics field when you started to explore it?

Researchers used a variety of simple “linear” machine learning
approaches, such as support vector machines and linear regression
that could, for instance, predict cancer from a patient’s gene expres‐
sion pattern. These techniques were by their design, “shallow.” In
other words, each input to the model would net a very simple
“advocate” or “don’t advocate” for the class label. Those methods
didn’t account for the complexity of biology.

Hidden Markov models and related techniques for analyzing
sequences became popular in the 1990’s and early 2000’s. Richard
Durbin and David Haussler were leading groups in this area.
Around the same time, Chris Burge’s group at MIT developed a
Markov model that could detect genes, inferring the beginning of
the gene as well as the boundaries between different parts, called
introns and exons. These methods were useful for low-level
“sequence analysis”, but they did not bridge the genotype-phenotype
divide.

Broadly speaking, the state of research at the time was driven by pri‐
marily shallow techniques that did not sufficiently account for the
underlying biological mechanisms for how the text of the genome
gets converted into cells, tissues and organs.

What does it mean to develop computational models that sufficiently
account for the underlying biology?

One of the most popular ways of relating genotype to phenotype is
to look for mutations that correlate with disease, in what’s called a
genome-wide association study (GWAS). This approach is also shal‐
low in the sense that it discounts the many biological steps involved
in going from a mutation to the disease phenotype. GWAS methods
can identify regions of DNA that may be important, but most of the
mutations they identify aren’t causal. In most cases, if you could
“correct” the mutation, it wouldn’t affect the phenotype.

A very different approach accounts for the intermediate molecular
phenotypes. Take gene expression, for example. In a living cell, a

20 | Chapter 3: Brendan Frey: Deep Learning Meets Genome Biology

gene gets expressed when proteins interact in a certain way with the
DNA sequence upstream of the gene, i.e., the “promoter.” A compu‐
tational model that respects biology should incorporate this
promoter-to-gene expression chain of causality. In 2004, Beer and
Tavazoie wrote what I considered an inspirational paper. They
sought to predict every yeast gene’s expression level based on its
promoter sequence, using logic circuits that took as input features
derived from the promoter sequence. Ultimately, their approach
didn’t pan out, but was a fascinating endeavor nonetheless.

My group’s approach was inspired by Beer and Tavazoie’s work, but
differed in three ways: we examined mammalian cells; we used more
advanced machine learning techniques; and we focused on splicing
instead of transcription. This last difference was a fortuitous turn in
retrospect. Transcription is far more difficult to model than splicing.
Splicing is a biological process wherein some parts of the gene
(introns) are removed and the remaining parts (exons) are connec‐
ted together. Sometimes exons are removed too, and this can have a
major impact on phenotypes, including neurological disorders and
cancers.

To crack splicing regulation using machine learning, my team colla‐
borated with a group led by an excellent experimental biologist
named Benjamin Blencowe. We built a framework for extracting
biological features from genomic sequences, pre-processing the
noisy experimental data, and training machine learning techniques
to predict splicing patterns from DNA. This work was quite success‐
ful, and led to several publications in Nature and Science.

Is genomics different from other applications of machine learning?

We discovered that genomics entails unique challenges, compared to
vision, speech and text processing. A lot of the success in vision rests
on the assumption that the object to be classified occupies a sub‐
stantial part of the input image. In genomics, the difficulty emerges
because the object of interest occupies only a tiny fraction—say, one
millionth—of the input. Put another way, your classifier acts on
trace amounts of signal. Everything else is noise—and lots of it.
Worse yet, it’s relatively structured noise comprised of other, much
larger objects irrelevant to the classification task. That’s genomics for
you.

The more concerning complication is that we don’t ourselves really
know how to interpret the genome. When we inspect a typical

Brendan Frey: Deep Learning Meets Genome Biology | 21

image, we naturally recognize its objects and by extension, we know
what we want the algorithm to look for. This applies equally well to
text analysis and speech processing, domains in which we have
some handle on the truth. In stark contrast, humans are not natu‐
rally good at interpreting the genome. In fact, they’re very bad at it.
All this is to say that we must turn to truly superhuman artificial
intelligence to overcome our limitations.

Can you tell us more about your work around medicine?

We set out to train our systems to predict molecular phenotypes
without including any disease data. Yet once it was trained, we real‐
ized our system could in fact make accurate predictions for disease;
it learned how the cell reads the DNA sequence and turns it into
crucial molecules. Once you have a computational model of how
things work normally, you can use it to detect when things go awry.

We then directed our system to large scale disease mutation datasets.
Suppose there is some particular mutation in the DNA. We feed that
mutated DNA sequence, as well as its non-mutated counterpart, into
our system and compare the two outputs, the molecular phenotypes.
If we observe a big change, we label the mutation as potentially
pathogenic. It turns out that this approach works well.

But of course, it isn’t perfect. First, the mutation may change the
molecular phenotype, but not lead to disease. Second, the mutation
may not affect the molecular phenotype that we’re modeling, but
lead to a disease in some other way. Third, of course, our system isn’t
perfectly accurate. Despite these shortcomings, our approach can
accurately differentiate disease from benign mutations. Last year, we
published papers in Science and Nature Biotechnology demonstrating
that the approach is significantly more accurate than competing
ones.

Where is your company, Deep Genomics, headed?

Our work requires specialized skills from a variety of areas, includ‐
ing deep learning, convolutional neural networks, random forests,
GPU computing, genomics, transcriptomics, high-throughput
experimental biology, and molecular diagnostics. For instance, we
have on board Hui Xiong, who invented a Bayesian deep learning
algorithm for predicting splicing, and Daniele Merico, who devel‐
oped the whole genome sequencing diagnostics system used at the

22 | Chapter 3: Brendan Frey: Deep Learning Meets Genome Biology

Hospital for Sick Children. We will continue to recruit talented peo‐
ple in these domains.

Broadly speaking, our technology can impact medicine in numerous
ways, including: Genetic diagnostics, refining drug targets, pharma‐
ceutical development, personalized medicine, better health insur‐
ance and even synthetic biology. Right now, we are focused on
diagnostics, as it’s a straightforward application of our technology.
Our engine provides a rich source of information that can be used to
make more reliable patient decisions at lower cost.

Going forward, many emerging technologies in this space will
require the ability to understand the inner workings of the genome.
Take, for example, gene editing using the CRISPR/Cas9 system. This
technique let’s us “write” to DNA and as such could be a very big
deal down the line. That said, knowing how to write is not the same
as knowing what to write. If you edit DNA, it may make the disease
worse, not better. Imagine instead if you could use a computational
“engine” to determine the consequences of gene editing writ large?
That is, to be fair, a ways off. Yet ultimately, that’s what we want to
build.

Brendan Frey: Deep Learning Meets Genome Biology | 23

CHAPTER 4

Risto Miikkulainen: Stepping
Stones and Unexpected Solutions

in Evolutionary Computing

Risto Miikkulainen is professor of computer science and neuroscience
at the University of Texas at Austin, and a fellow at Sentient Technolo‐
gies, Inc. Risto’s work focuses on biologically inspired computation such
as neural networks and genetic algorithms.

Key Takeaways
• Evolutionary computation is a form of reinforcement learning

applied to optimizing a fitness function.
• Its applications include robotics, software agents, design, and

web commerce.
• It enables the discovery of truly novel solutions.

Let’s start with your background.

I completed my Ph.D. in 1990 at the UCLA computer science
department. Following that, I became a professor in the computer
science department at the University of Texas, Austin. My disserta‐
tion and early work focused on building neural network models of
cognitive science—language processing and memory, in particular.
That work has continued throughout my career. I recently dusted off

25

those models to drive towards understanding cognitive dysfunction
like schizophrenia and aphasia in bilinguals.

Neural networks, as they relate to cognitive science and engineering,
have been a main focus throughout my career. In addition to cogni‐
tive science, I spent a lot of time working in computational neuro‐
science.

More recently, my team and I have been focused on neuroevolution;
that is, optimizing neural networks using evolutionary computation.
We have discovered that neuroevolution research involves a lot of
the same challenges as cognitive science, for example, memory,
learning, communication and so on. Indeed, these fields are really
starting to come together.

Can you give some background on how evolutionary computation works,
and how it intersects with deep learning?

Deep learning is a supervised learning method on neural networks.
Most of the work involves supervised applications where you
already know what you want, e.g., weather predictions, stock market
prediction, the consequence of a certain action when driving a car.
You are, in these cases, learning a nonlinear statistical model of that
data, which you can then re-use in future situations. The flipside of
that approach concerns unsupervised learning, where you learn the
structure of the data, what kind of clusters there are, what things are
similar to other things. These efforts can provide a useful internal
representation for a neural network.

A third approach is called reinforcement learning. Suppose you are
driving a car or playing a game: It’s harder to define the optimal
actions, and you don’t receive much feedback. In other words, you
can play the whole game of chess, and by the end, you’ve either won
or lost. You know that if you lost, you probably made some poor
choices. But which? Or, if you won, which were the well-chosen
actions? This is, in a nutshell, a reinforcement learning problem.

Put another way, in this paradigm, you receive feedback periodically.
This feedback, furthermore, will only inform you about how well
you did without in turn listing the optimal set of steps or actions
you took. Instead, you have to discover those actions through explo‐
ration—testing diverse approaches and measuring their perfor‐
mance.

26 | Chapter 4: Risto Miikkulainen: Stepping Stones and Unexpected Solutions in
Evolutionary Computing

Enter evolutionary computation, which can be posed as a way of
solving reinforcement learning problems. That is, there exists some
fitness function, and you focus on evolving a solution that optimizes
that function.

In many cases, however, in the real world, you do not have a full
state description—a full accounting of the facts on the ground at any
given moment. You don’t, in other words, know the full context of
your surroundings. To illustrate this problem, suppose you are in a
maze. Many corridors look the same to you. If you are trying to
learn to associate a value for each action/state pair, and you don’t
know what state you are in, you cannot learn. This is the main chal‐
lenge for reinforcement learning approaches that learn such utility
values for each action in each respective state.

Evolutionary computation, on the other hand, can be very effective
in addressing these problems. In this approach, we use evolution to
construct a neural network, which then ingests the state representa‐
tion, however noisy or incomplete, and suggests an action that is
most likely to be beneficial, correct, or effective. It doesn’t need to
learn values for each action in each state. It always has a complete
policy of what to do—evolution simply refines that policy. For
instance, it might first, say, always turn left at corners and avoid
walls, and gradually then evolve towards other actions as well. Fur‐
thermore, the network can be recurrent, and consequently remem‐
ber how it “got” to that corridor, which disambiguates the state from
other states that look the same. Neuroevolution can perform better
on problems where part of the state is hidden, as is the case in many
real-world problems.

How formally does evolutionary computation borrow from biology, and
how you are driving toward potentially deepening that metaphor?

Some machine learning comprises pure statistics or is otherwise
mathematics-based, but some of the inspiration in evolutionary
computation, and in neural networks and reinforcement learning in
general, does in fact derive from biology. To your question, it is
indeed best understood as a metaphor; we aren’t systematically rep‐
licating what we observe in the biological domain. That is, while
some of these algorithms are inspired by genetic evolution, they
don’t yet incorporate the overwhelming complexity of genetic
expression, epigenetic influence and the nuanced interplay of an
organism with its environment.

Risto Miikkulainen: Stepping Stones and Unexpected Solutions in Evolutionary Computing |
27

Instead, we take the aspects of biological processes that make com‐
putational sense and translate them into a program. The driving
design of this work, and indeed the governing principle of biological
evolution, can be understood as selection on variation.

At a high level, it’s quite similar to the biological story. We begin
with a population from which we select the members that reproduce
the most, and through selective pressure, yield a new population
that is more likely to be better than the previous one. In the mean‐
time, researchers are working on incorporating increasing degrees
of biological complexity into these models. Much work remains to
be done in this regard.

What are some applications of this work?

Evolutionary algorithms have existed for quite a while, indeed since
the ’70s. The lion’s share of work centered around engineering appli‐
cations, e.g., trying to build better power grids, antennas and robotic
controllers through various optimization methods. What got us
really excited about this field are the numerous instances where evo‐
lution not only optimizes something that you know well, but goes
one step further and generates novel and indeed surprising solu‐
tions.

We encountered such a breakthrough when evolving a controller for
a robot arm. The arm had six degrees of freedom, although you
really only needed three to control it. The goal was to get its fingers
to a particular location in 3D space. This was a rather straightfor‐
ward exercise, so we complicated things by inserting obstacles along
its path, all the while evolving a controller that would get to the goal
while avoiding said obstacles. One day while working on this prob‐
lem, we accidentally disabled the main motor, i.e., the one that turns
the robot around its main axis. Without that particular motor, it
could not reach its goal location.

We ran the evolution program, and although it took five times
longer than usual, it ultimately found a solution that would guide
the fingers into the intended location. We only understood what was
going on when we looked at a graphical visualization of its behavior.
When the target was, say, all the way to the left, and the robot
needed to turn around the main axis to get its arm into close prox‐
imity – it was, by definition, unable to turn without its main motor.
Instead, it turned the arm from the elbow and the shoulder, away
from the goal, then swung it back with quite some force. Thanks to

28 | Chapter 4: Risto Miikkulainen: Stepping Stones and Unexpected Solutions in
Evolutionary Computing

momentum, the robot would turn around its main axis, and get to
the goal location, even without the motor. This was surprising to say
the least.

This is exactly what you want in a machine learning system. It fun‐
damentally innovates. If a robot on Mars loses its wheel or gets stuck
on a rock, you still want it to creatively complete its mission.

Let me further underscore this sort of emergent creativity with
another example (of which there are many!). in one of my classes,
we assigned students to build a game-playing agent to win a game
similar to tic-tac-toe, only played on a very large grid where the goal
is to get five in a row. The class developed a variety of approaches,
including neural networks and some rule-based systems, but the
winner was an evolution system that evolved to make the first move
to a location really far away, millions of spaces away from where the
game play began. Opposing players would then expand memory to
capture that move, until they ran out of memory and crashed. It was
a very creative way of winning, something that you might not have
considered a priori.

Evolution thrives on diversity. If you supply it with representations
and allow it to explore a wide space, it can discover solutions that
are truly novel and interesting. In deep learning, most of the time
you are learning a task you already know—weather prediction, stock
market prediction, etc.—but, here, we are being creative. We are not
just predicting what will happen, but we are creating objects that
didn’t previously exist.

What is the practical application of this kind of learning in industry? You
mentioned the Mars rover, for example, responding to some obstacle with
evolution-driven ingenuity. Do you see robots and other physical or soft-
ware agents being programmed with this sort of on the fly, ad hoc, explora-
tory creativity?

Sure. We have shown that evolution works. We’re now focused on
taking it out into the world and matching it to relevant applications.
Robots, for example, are a good use case: They have to be safe; they
have to be robust; and they have to work under conditions that no-
one can fully anticipate or model. An entire branch of AI called evo‐
lutionary robotics centers around evolving behaviors for these kinds
of real, physical robots.

Risto Miikkulainen: Stepping Stones and Unexpected Solutions in Evolutionary Computing |
29

At the same time, evolutionary approaches can be useful for soft‐
ware agents, from virtual reality to games and education. Many sys‐
tems and use cases can benefit from the optimization and creativity
of evolution, including web design, information security, optimizing
traffic flow on freeways or surface roads, optimizing the design of
buildings, computer systems, and various mechanical devices, as
well as processes such as bioreactors and 3-D printing. We’re begin‐
ning to see these applications emerge.

What would you say is the most exciting direction of this research?

I think it is the idea that, in order to build really complex systems,
we need to be able to use “stepping stones” in evolutionary search. It
is still an open question: using novelty, diversity and multiple objec‐
tives, how do we best discover components that can be used to con‐
struct complex solutions? That is crucial in solving practical
engineering problems such as making a robot run fast or making a
rocket fly with stability, but also in constructing intelligent agents
that can learn during their lifetime, utilize memory effectively, and
communicate with other agents.

But equally exciting is the emerging opportunity to take these tech‐
niques to the real world. We now have plenty of computational
power, and evolutionary algorithms are uniquely poised to take
advantage of it. They run in parallel and can as a result operate at
very large scale. The upshot of all of this work is that these
approaches can be successful on large-scale problems that cannot
currently be solved in any other way.

30 | Chapter 4: Risto Miikkulainen: Stepping Stones and Unexpected Solutions in
Evolutionary Computing

CHAPTER 5

Benjamin Recht: Machine
Learning in the Wild

Benjamin Recht is an associate professor in the electrical engineering
and computer sciences department and the statistics department at the
University of California at Berkeley. His research focuses on scalable
computational tools for large-scale data analysis, statistical signal pro‐
cessing, and machine learning—exploring the intersections of convex
optimization, mathematical statistics, and randomized algorithms.

Key Takeaways
• Machine learning can be effectively related to control theory, a

field with roots in the 1950s.
• In general, machine learning looks to make predictions by

training on vast amounts of data to predict the average case.
On the other hand, control theory looks to build a physical
model of reality and warns of the worst case (i.e., this is how
the plane responds to turbulence).

• Combining control principles with reinforcement learning will
enable machine learning applications in areas where the worst
case can be a question of life or death (e.g., self driving cars).

31

You’re known for thinking about computational issues in machine learning,
but you’ve recently begun to relate it to control theory. Can you talk about
some of that work?

I’ve written a paper with Andy Packard and Laurent Lessard, two
control theorists. Control theory is most commonly associated with
aviation or manufacturing. So you might think, what exactly does
autopilot have to do with machine learning? We’re making great
progress in machine learning systems, and we’re trying to push their
tenets into many different kinds of production systems. But we’re
doing so with limited knowledge about how well these things are
going to perform in the wild.

This isn’t such a big deal with most machine learning algorithms
that are currently very successful. If image search returns an outlier,
it’s often funny or cute. But when you put a machine learning system
in a self-driving car, one bad decision can lead to serious human
injury. Such risks raise the stakes for the safe deployment of learning
systems.

Can you explain how terms like robustness and error are defined in control
system theory?

In engineering design problems, robustness and performance are
competing objectives. Robustness means having repeatable behavior
no matter what the environment is doing. On the other hand, you
want this behavior to be as good as possible. There are always some
performance goals you want the system to achieve. Performance is a
little bit easier to understand—faster, more scalable, higher accuracy,
etc. Performance and robustness trade off with each other: the most
robust system is the one that does nothing, but the highest perform‐
ing systems typically require sacrificing some degree of safety.

Can you share some examples and some of the theoretical underpinnings of
the work and your recent paper?

The paper with Laurent and Andy noted that all of the algorithms
we popularly deploy in machine learning look like classic dynamical
systems that control theorists have studied since the 1950’s. Once we
drew the connection, we realized we could lean on 70 years of expe‐
rience analyzing these systems. Now we can examine how these
machine learning algorithms perform as you add different kinds of
noise and interference to their execution.

32 | Chapter 5: Benjamin Recht: Machine Learning in the Wild

For one very popular algorithm called the Heavy Ball method, we
discovered that if you use off-the-shelf settings, there are cases when
it never converges. No one had yet produced a formal proof that the
algorithm converged, but everybody assumed it worked in practice.
Moreover, we were able to modify the parameters to find a regime
where it always converged. What makes this analysis toolkit so use‐
ful is that we can not only certify whether a method will work, but
we can interactively manipulate a specified algorithm to make it
more robust.

Do you mean I can take a library of linear and nonlinear algorithms, super-
vised and unsupervised approaches, and basically score them according to
how robust they are?

Yes. We’ve only done this in some very simple cases so far, but we’re
hoping to expand on this work. You can plug the algorithm into this
framework, and we’ll give you back an analysis as to how fast it
might converge or how much noise it can reject. Then you can tune
this algorithm to improve some metric of interest.

Control systems that might, for example, model airplane flight, don’t derive
their parameters by studying millions of hours of flight in the way we
understand a classical machine learning algorithm might. How do control
theorists build their models in contrast to machine learning approaches?

Control is very much about building reasonable models based on
understanding how a system responds to different conditions. Air
passes over a wing, which will create some kind of lift. They work
from these physics models of aerodynamics and then they build a
control system around that to make sure you actually fly in a
straight line. Now, things get complicated when you add in turbu‐
lence, but rather than build a more complicated model of turbulence
here, they model this as a “black-box” disturbance. Control theory
aims to build policies that keep the plane up in the air as long as the
black-box disturbance isn’t too extreme.

In machine learning, I would like to decide whether or not there’s a
human in front of me if, for example, I’m a self-driving car. I might
use a dictionary of 15 million images, some of them labeled with
“human” and some of them labeled with “not human.” My model is
derived from this huge data set rather than from physical principles
about how humans present themselves in a scene. One of the guid‐
ing principles of machine learning is that if you give me all the data

Benjamin Recht: Machine Learning in the Wild | 33

http://pages.cs.wisc.edu/~brecht/cs726docs/HeavyBallLinear.pdf

in the universe, then I can make any prediction you need. This is
also one of its main conceits.

Right. Turbulence is not predictable, but it is kind of predictable. It’s predict-
able insofar as how the plane is going to respond. So control systems are, in
a way, more deterministic.

Yes, exactly. Turbulence is exactly the idea of robustness. So, you can
either apply a model to turbulence, or you can just look for the
worst case outcome that can happen under turbulent behavior. The
latter is much easier. That’s what robust control people do. You take
your uncertainty, you try to put it in a box, and you say, “That’s what
uncertainty looks like.”

Now, you can build control systems without physical models. Look
at what the guys at DeepMind are doing with video games. They are
using techniques from reinforcement learning to outperform
humans. In reinforcement learning, rather than building a model,
you just play a lot of representative scenes to a control system, and
you modify the controller after each interaction in such a way that
you improve the performance. That’s how the machines learn to
play Atari games. They just play it thousands and thousands and
thousands of times and make a record of every possible thing you
could do in this Atari game and then build a data-driven control
policy from there. My colleague Pieter Abbeel and his students have
recently made some remarkable progress using reinforcement learn‐
ing and neural networks to learn locomotion and to enable robots to
nimbly interact with real objects.

Is there a difference between how control theorists and machine learning
researchers think about robustness and error?

In machine learning, we almost always model our errors as being
random rather than worst-case. In some sense, random errors are
actually much more benign than worst-case errors. Let’s say you’re
just going to add up a sequence of numbers. Each number is either
one or minus one, and we’re going to sum up 20 of them. The worst
case sum—that is the largest sum—is achieved when you set all of
your choices equal to one. This gets you 20. But if you flip a coin to
assign the ones and minus ones, on average the sum will be zero!
And, more often than not, you’ll get something on the order of five.
It will be consistently smaller. The odds of getting a 20 is one in a
million.

34 | Chapter 5: Benjamin Recht: Machine Learning in the Wild

In machine learning, by assuming average-case performance, rather
than worst-case, we can design predictive algorithms by averaging
out the errors over large data sets. We want to be robust to fluctua‐
tions in the data, but only on average. This is much less restrictive
than the worst-case restrictions in controls

This ties back to your earlier point about average versus worst/best case.

Exactly. It’s a huge deal. We don’t want to rely solely on worst-case
analysis because that’s not going to reflect our reality. On the other
hand, it would be good to have at least more robustness in our pre‐
dictions and a little bit of understanding about how these are going
to fare as our data varies and our data changes.

One example where my collaborators and I have been able to take
advantage of randomness came in a study of stochastic gradient
descent (SGD). SGD is probably the most popular algorithm in
machine learning, and is the foundation of how we train neural nets.
Feng Niu, Chris Re, Stephen Wright, and I were able to parallelize
this algorithm by taking advantage of randomness. Feng, a grad stu‐
dent at the time, was experimenting with some strategies to parallel‐
ize SGD. Out of frustration, he turned off the locks in his parallel
code. To all of our surprise, it just worked better. It worked a lot bet‐
ter. Basically, we started getting linear speedups.

In trying to explain that phenomenon, we formalized something
called “HOGWILD!”—a lock-free approach to parallelizing stochas‐
tic gradient descent. In the worst case, the HOGWILD! approach
would degrade performance. But because the errors are random,
you get dramatic speedups in practice. People picked up on the idea
and started implementing it. And for a lot of the state-of-the-art
deep learning models, HOGWILD! became a go-to technique.

So, control theory is model-based and concerned with worst case. Machine
learning is data based and concerned with average case. Is there a middle
ground?

I think there is! And I think there’s an exciting opportunity here to
understand how to combine robust control and reinforcement
learning. Being able to build systems from data alone simplifies the
engineering process, and has had several recent promising results.
Guaranteeing that these systems won’t behave catastrophically will
enable us to actually deploy machine learning systems in a variety of
applications with major impacts on our lives. It might enable safe

Benjamin Recht: Machine Learning in the Wild | 35

autonomous vehicles that can navigate complex terrains. Or could
assist us in diagnostics and treatments in health care. There are a lot
of exciting possibilities, and that’s why I’m excited about how to find
a bridge between these two viewpoints.

36 | Chapter 5: Benjamin Recht: Machine Learning in the Wild

CHAPTER 6

Daniela Rus: The Autonomous Car
As a Driving Partner

Daniela Rus is a professor of electrical engineering and computer sci‐
ence and director of the Computer Science and Artificial Intelligence
Laboratory (CSAIL) at MIT. Rus is the first woman to serve as direc‐
tor of CSAIL and its predecessors—the AI Lab and the Lab for Com‐
puter Science.

Key Takeaways
• Robotics, a field with roots as far back as ancient Greece, is

undergoing a period of explosive growth, driven by improve‐
ments in computational power, better sensors and new
materials.

• Producing increasingly more autonomous machines requires
new computational approaches to designing and fabricating
functional machines at scale.

• MIT-CSAIL, in partnership with Toyota Motor Corporation,
have set out to create a car that will never be responsible for a
collision. This project builds on MIT’s collaborative work with
the National University of Singapore, which demonstrates safe
self-driving vehicles at low speeds in low-complexity environ‐
ments.

37

Let’s start with your background.

I’m a roboticist. I started as a computer science and math major in
college. Towards the end of my college career, I met John Hopcroft,
who then became my Ph.D. thesis advisor. At one point, he delivered
a very inspiring talk, in which he observed that many of the classical
computer science problems have already been solved. Instead, it was
now time for the grand applications of computer science, including,
of course, robotics.

I continued on to Cornell, where I spent about five years working on
my Ph.D. In those days, Cornell produced a lot of foundational work
in robotics. Following my Ph.D., I accepted a job as an assistant pro‐
fessor at Dartmouth College, where I founded a robotics research
lab. And in 2003, I made my way to MIT, where I work today. The
main objective of my work is to advance the science of autonomy:
how can machines operate without human input in the physical
world? I’m especially interested in cases where multiple machines
coordinate to accomplish something that neither machine is able to
solve alone.

Can you briefly sketch out the origins of robotics as a field?

Early robotic concepts date far back. The ancient Greeks engineered
complex machines out of simple mechanisms, which could open
temple doors or play musical instruments. In the 18th century, Swiss
watchmakers designed automata, hard-coded mechanisms that
could play musical instruments, write, and even paint.

In the early 1960s, George Devol, who is considered the father of
industrial robotics, built a robot called Unimate. His work marked a
major leap over previous automata. This robot was programmable
to perform disparate tasks: It could swing a golf club or pour wine.
Later in the ‘70s, The Stanford Cart presented an early example of a
robotic mobile device; it was, in effect, a mobile robot and the first
of its kind to combine perception and action with planning. The
robot took painstakingly long to traverse the trajectory from one
end of a small parking lot to the other, yet its success marked the
dawn of technological breakthroughs in robotics centered on
machine perception, planning and learning.

Over the past decade, the field writ large experienced remarkable
progress, driven by a number of important trends: computational
power has been increasing at a breakneck pace, the hardware

38 | Chapter 6: Daniela Rus: The Autonomous Car As a Driving Partner

required to interact with the physical world—the sensors and
motors themselves—have become smaller and more reliable, and an
array of new materials continue pushing the limits of design.

In parallel, the community has achieved breakthrough progress in
the science and application of planning, control, and perception.
Today’s robots have an incredible set of skills: The ability to make
maps, localize, as well as smart decision making and learning
capacity. Up until recently, these twin threads of progress and
knowledge have been pursued somewhat independently. We’re now
witnessing their convergence. The state-of-the-art in each field is
coalescing to deliver results that were merely a dream even just ten
years ago.

What is your primary focus in robotics?

My greatest interest is to advance the science of autonomy—in par‐
ticular, systems that involve multiple robots working together. I
want to make robots more capable and independent, and I want to
see these advanced physical machines improve our lives.

A strong interplay underlies the robot’s physical and software capa‐
bilities. In some cases, we need to invent new robot bodies to deliver
on the capabilities that we want. In other cases, we repurpose exist‐
ing robot bodies to do novel things.

I have been interested in how to make capable robots, faster. One
such approach advances a universal robot cell, or module, that can
be reused to make all kinds of different robots. This idea, in turn,
suggests shape-shifting robots—modular, cellular robots with the
ability to adapt their geometric structure to the task at hand, auton‐
omously. If you build a robot designed solely for a single task, the
robot will perform that task well, but will, by its very design, per‐
form poorly on an unrelated or different task in a foreign environ‐
ment. In contrast, if you design machines with the ability to
contextually re-organize their internal geometry, you obtain the
right robot body for the right application and environment.

An alternative solution to this problem is to make task-specific
robots more quickly, by automating the design and fabrication of
robots from high-level specifications. In other words, create a robot
compiler. The general idea is to automatically convert user-defined
functional specifications into physical one-of-a-kind machines that
meet those specifications.

Daniela Rus: The Autonomous Car As a Driving Partner | 39

You’ve also spent time working on autonomous vehicles. Can you tell us
about your work in that domain?

I have been working on self-driving cars as part of a collaboration
between MIT and the National University of Singapore for several
years now. We are developing a system of autonomous golf carts and
autonomous electric vehicles for mobility on demand. This project
is being run under the auspices of the Singapore-MIT Alliance for
Research and Technology (SMART).

Through our work, we have already demonstrated that self-driving
cars, at low speeds in low-complexity environments are in fact relia‐
ble! We are now extending these self-driving vehicles to an urban
mobility system, similar in spirit to the now-popular shared bicycle
programs. Bicycle programs, for their part, face some basic chal‐
lenges. Over time, some stations become depleted of bikes while
others overflow. Cities respond by hiring people and trucks to reba‐
lance the vehicles in what amounts to a costly and inefficient exer‐
cise.

Imagine, instead, if the bikes could drive themselves to the next des‐
tination to match local demand. In our model, the self-driving car
transports you to your destination and then coordinates with other
cars to pick up the next person in line. The car then drives itself to
the appropriate next spot. With sufficient investment, this idea has
the potential to turn transportation into a utility, available to people
in cities anywhere and anytime.

In addition, we recently launched a collaboration between MIT
CSAIL and Toyota to develop a safe car that will never be responsi‐
ble for a collision, becoming, over time, a trusted partner for the
human driver. I am very, very excited about these new research
directions.

What are some of the main challenges in making autonomous vehicles that
can safely navigate cities?

The major challenges hinge on environmental complexity, speed of
movement, weather, and human-interaction. The current machine
perception and control algorithms are not smart enough nor fast
enough to respond to the extreme driving circumstances we
encounter in heavy congestion and bad weather. Imagine traffic in
New Delhi, the Philippines, or L.A. It’s treacherous for numerous
reasons: congestion, erratic driver behavior, coordination through

40 | Chapter 6: Daniela Rus: The Autonomous Car As a Driving Partner

silent hand gestures among human drivers, inclement weather,
heavy rain, snow, poor visibility, and so on. The self-driving car, as a
problem, is not solved. It’s important to keep that in mind.

Can you walk us through the self-driving car hardware and software
makeup?

The vehicles in the SMART project contain a minimalist hardware
configuration. They use two forward-pointed laser scanners, one for
mapping and localization and another for obstacle detection. They
also carry a forward-pointing camera for detecting moving obstacles
(e.g., a pedestrian), as well as side and rear-pointing laser scanners,
an Inertial Measurement Unit (IMU), and wheel encoders.

What machine learning techniques are critical to the next stages of autono-
mous car development?

Deep learning is engendering a great deal of enthusiasm. Armed
with the latest deep learning packages, we can begin to recognize
objects in previously impossible ways. Machine learning presents an
interesting challenge for driving because the car requires the utmost
reliability and efficiency in how other cars, obstacles, and objects in
the surrounding environment are recognized and taken into
account. In other words, there is no room for error, especially as
high speeds.

What’s next—do cars take over driving altogether?

A bedrock assumption in our work with Toyota is that driving is
fun. We’d like to see a partnership between the car and and its
(human) driver. I would like for my car to learn and adapt to my
preferences and normal state. In the future, the car might be able to
determine that I’m having a difficult day based on how I speak and
then keep a close eye on my driving; if I am about to make a mis‐
take, for example, by miscalculating the speed of the incoming traf‐
fic during a left turn, the car could intercede and correct the
mistake. This sort of override would operate in the same spirit of the
anti-lock braking systems we have come to rely on.

I want to conclude by reminding everyone that an accident happens
in the U.S. every 5 seconds. The costs, both in terms of human life,
and in economic terms, are simply staggering. We envision that car
of the future will possess a parallel autonomy system able to correct
the mistakes of the human drivers and prevent those deadly colli‐

Daniela Rus: The Autonomous Car As a Driving Partner | 41

sions. This car, in time, will learn a lot about its human operator by
way of becoming a trusted partner, without taking away the joy of
driving.

42 | Chapter 6: Daniela Rus: The Autonomous Car As a Driving Partner

CHAPTER 7

Gurjeet Singh: Using Topology to
Uncover the Shape of Your Data

Gurjeet Singh is CEO and co-founder of Ayasdi, a company that lever‐
ages machine intelligence software to automate and accelerate discov‐
ery of data insights. The author of numerous patents and publications
in top mathematics and computer science journals, Gurjeet has devel‐
oped key mathematical and machine learning algorithms for topologi‐
cal data analysis.

Key Takeaways
• The field of topology studies the mapping of one space into

another through continuous deformations.
• Machine learning algorithms produce functional mappings

from an input space to an output space and lend themselves to
be understood using the formalisms of topology.

• A topological approach allows you to study datasets without
assuming a shape beforehand and to combine various machine
learning techniques while maintaining guarantees about the
underlying shape of the data.

43

https://twitter.com/singhgurjeet
http://www.ayasdi.com/

Let’s get started by talking about your background and how you got to
where you are today.

I am a mathematician and a computer scientist, originally from
India. I got my start in the field at Texas Instruments, building inte‐
grated software and performing digital design. While at TI, I got to
work on a project using clusters of specialized chips called digital
signal processors (DSPs) to solve computationally hard math prob‐
lems.

As an engineer by training, I had a visceral fear of advanced math. I
didn’t want to be found out as a fake, so I enrolled in the Computa‐
tional Math program at Stanford. There, I was able to apply some of
my DSP work to solving partial differential equations and demon‐
strate that a fluid dynamics researcher need not buy a supercom‐
puter anymore. They could just employ a cluster of DSPs to run the
system. I then spent some time in mechanical engineering building
similar GPU-based partial differential equation solvers for mechani‐
cal systems. Finally, I worked in Andrew Ng’s lab at Stanford, build‐
ing a quadruped robot and programming it to learn to walk by itself.

Then one day I saw a note from my advisor, Gunnar Carlsson,
describing how he was applying topology to explain real data sets.
He explained how topology could be applied equally well to four or
five very distinct and interesting problem areas. That was really
exciting, and I started working with him on the topic. The project
was an academic success and DARPA (the Defense Advanced
Research Projects Agency) asked us to commercialize our research
and start a company. That’s how we started Ayasdi.

Can you tell us about the evolution of topology, broadly speaking, and share
some insights as to why it is so useful for unifying disparate areas in
machine intelligence?

Topology is a very old branch of mathematics. It was developed in
the 1700s by mathematicians like Euler. It was originally developed
to quantify the qualitative aspects of algebraic equations. For exam‐
ple, if you have the equation for a circle, topology is the area of math
that allows you to say that, for example, “Oh, a circle is a single con‐
nected thing; it divides the plane into an inside and an outside; and
it has a simple connectivity structure.” Over the course of its devel‐
opment over the last 300 years, it has become the study of mapping
one space into another.

44 | Chapter 7: Gurjeet Singh: Using Topology to Uncover the Shape of Your Data

http://math.stanford.edu/~gunnar/

For example, there are two large classes of machine learning algo‐
rithms. There are supervised machine learning algorithms and the
unsupervised ones. Furthermore, within supervised algorithms,
there are two types: algorithms that take an input vector to predict a
number, and algorithms that take a vector to produce a class label.

On the unsupervised side, there are two distinct methods. What
unifies these four distinct functions is they all produce functional
mappings from an input space to an output space. The built-in for‐
malism of topology allows you to learn across different types of
functions. So if you want to combine the results of these various
learning algorithms together, topology allows you to do that, while
still maintaining guarantees about the underlying shape or distribu‐
tions. That’s the first critical insight.

The second insight is that, basically, all machine learning algorithms
solve optimization problems. The machine learning algorithm
assumes a particular shape of the data for each problem. Then the
optimization procedure finds the best parameters that make the data
look like that shape. Topology does the reverse. Topology, even
though it utilizes all these machine learning algorithms under the
covers, allows you to discover the underlying shape of the data so
that you don’t have to assume it.

What are some of the key concepts around the application of topology to
machine learning?

It’s very simple. There is only one key idea: data has shape, and
shape has meaning. In standard machine learning, the shape of the
data is usually an afterthought. Topology puts the shape front and
center, i.e., as being the most important aspect of your data.

What are the real world applications of this technology? Why is this
important?

Today, we’re awash in data. Machine learning algorithms were devel‐
oped as a methodology to extract value from increasingly large and
complex datasets. However, there are now many algorithms from
which to choose. The incomplete or incorrect application of
machine learning algorithms can lead to missing or even erroneous
conclusions.

Topology addresses this issue of increasing data complexity, by the
comprehensive investigation of your dataset with any algorithm or

Gurjeet Singh: Using Topology to Uncover the Shape of Your Data | 45

combination of algorithms, and presents an objective result (i.e., no
information loss).

Using a topological approach, what does a typical investigation look like?

One huge benefit of using topology is that you don’t have to pre-
suppose a library of shapes. You don’t have to say, “Okay, I know
what a circle looks like. A circle is our prototype now.” Topology
represents your underlying data in a combinatorial form. It con‐
structs a network in which every node in said network contains a
subset of your data, and two nodes are connected to each other if
they share some data.

If you think about it from a tabular perspective, you feed it your
table, and the output is this graph representation in which every
node is a subset of the rows. But a row can appear in more than one
node, and whenever that happens you connect them. This very sim‐
ple structure has a two huge advantages. The first is that irrespective
of the underlying machine learning algorithms that have been com‐
bined in a particular investigation, the output will always look like
this graph. The second is that this network form is very computable;
you can easily build things on top of it, like recommender systems,
piecewise linear models, gradient operators, and so on.

Can you generalize that to another example, where the shape is not neces-
sarily a circle?

Imagine that you had the letter Y on graph paper, and you’re sam‐
pling data from it. Clustering the raw data doesn’t make sense,
because you’ll recover a single cluster—if you’re lucky. If you want to
build a regression on it, that’s also wrong, because the data is non-
linear.

Imagine you use the centrality function to reduce the dimensions.
So for every point on the Y, you measure the sum of its distance to
every other point on the Y. The value of the function at the joining
point in the middle of the Y will be low, because all those points are
central. The tips of the Y will be high, because they’re far from
everything else. Now, if you merge your dimensionality reduction
function with clustering, then in the low range you get a single clus‐
ter, because it’s the middle of the Y. As you go out of that middle
range, you start seeing three clusters, because those are the spokes of
the Y.

46 | Chapter 7: Gurjeet Singh: Using Topology to Uncover the Shape of Your Data

Is it fair to generalize that when performing a topological investigation, the
first order of business is using some form of dimensionality reduction algo-
rithm?

That is correct. Once you reduce the data, compact it, and get the
benefit of being cognizant of the topology, you’re able to maintain
the shape while uncovering relationships in and among the data.
Basically, different dimensionality reduction algorithms will illumi‐
nate different aspects of the shape.

Is it just a matter of throwing all of these algorithms up against the wall to
see what’s interesting?

Yes, essentially, you throw as many of these functions at the data as
you can. These are usually computationally expensive functions e.g.,
Isomap. Topology allows you to compare across them very
smoothly. You can discover statistically significant differences in
your data in an algorithmic way. The machinery allows you to do
that very beautifully.

Given you can map the same data into different views/representations, is
there a single view that’s analytically superior towards the goal of under-
standing any particular problem?

You have to be careful. You don’t necessarily want a single view.
There is no single right answer, because different combinations of
these algorithms will produce different types of insights in your
data. They are all equally valid if you can prove their statistical valid‐
ity. You don’t want to somehow confine yourself to a single right
answer. You want to pull out statistically significant ideas from all of
these.

Do the insights or results across different views of the same data ever con-
tradict each other?

In fact, one of the things that’s beneficial in our approach is that
these algorithms are correlated with each other. In many cases, you
find the evidence for the same phenomena over and over again
across multiple maps. Wherever that happens, you can be more con‐
fident about what you found.

So in other words, features that persist across different views or mappings
are more significant?

Gurjeet Singh: Using Topology to Uncover the Shape of Your Data | 47

One of the areas of topology that is especially interesting to this dis‐
cussion is homology. Persistent homology essentially talks about the
stability of features that you discover using topological methods.
You can imagine in many machine learning settings, you have these
algorithms that are parameterized in various ways. You somehow
have to say, “Okay, this is the set of parameters that I’m going to
choose.” You can imagine in all of those settings, it’s very helpful to
have tools that tell you the stability range of these parameters. That
across this or that range they are going to be stable.

Imagine if you stare at a circle from a long distance, from far enough
away, you might conclude that a circle is just a dot. So you have to
ask, “Over what range of distances do I call a circle a circle?” And
this generalizes to other shapes and the various resolutions in which
they can be viewed. There’s a really interesting body of research
around this. In fact, some parts of this work are also used at Ayasdi
(in our code base), but we don’t expose it.

Looking ahead, what would you consider the most exciting developments in
machine intelligence? Is persistent homology the kind of the thing you
would tell folks to look at, either inside or outside of topology?

This is the golden age of machine learning. There is so much inter‐
esting work going on. We’ve turned a corner; in the past, people
working in the field tended to be married to a particular method.
Now, all of a sudden, people are open to new things. For example, all
through 1980s there was a focus on logistic regression, and nobody
wanted to do anything else. By the 2000s, the focus has shifted to
support vector machines (SVMs) and, again, nobody wanted to do
anything else. These days, the whole field seems to have matured.
Everybody is open to different points of view.

I think there’s a lot of interesting work going on in feature engineer‐
ing. That’s interesting, because on the one hand, we have this whole
deep learning core process. So some will tell you that we don’t need
feature engineering. But on the other hand, everybody who does
feature engineering with deep learning produces much better
results.

In topology more specifically, the exciting news is that we now have
a few things that work. And we are on the cusp of attaining a theo‐
retical understanding of why that happens; that is, why the things
that work—work. When we understand that, we can begin to evolve
it. These are indeed exciting times!

48 | Chapter 7: Gurjeet Singh: Using Topology to Uncover the Shape of Your Data

CHAPTER 8

Ilya Sutskever: Unsupervised
Learning, Attention, and

Other Mysteries

Ilya Sutskever is a research scientist at Google and the author of
numerous publications on neural networks and related topics. Sutsk‐
ever is a co-founder of DNNresearch and was named Canada’s first
Google Fellow.

Key Takeaways
• Since humans can solve perception problems very quickly,

despite our neurons being relatively slow, moderately deep and
large neural networks have enabled machines to succeed in a
similar fashion.

• Unsupervised learning is still a mystery, but a full understand‐
ing of that domain has the potential to fundamentally trans‐
form the field of machine learning.

• Attention models represent a promising direction for powerful
learning algorithms that require ever less data to be successful
on harder problems.

49

http://bit.ly/dnn-acq

Let’s start with your background. What was the evolution of your interest in
machine learning, and how did you zero in on your Ph.D. work?

I started my Ph.D. just before deep learning became a thing. I was
working on a number of different projects, mostly centered around
neural networks. My understanding of the field crystallized when
collaborating with James Martins on the Hessian-free optimizer. At
the time, greedy layer-wise training (training one layer at a time)
was extremely popular. Working on the Hessian-free optimizer hel‐
ped me understand that if you just train a very large and deep neural
network on a lot of data, you will almost necessarily succeed.

Taking a step back, when solving naturally occurring machine learn‐
ing problems, you use some model. The fundamental question is
whether you believe that this model can solve the problem for some
setting of its parameters? If the answer is no, then the model will not
get great results, no matter how good its learning algorithm. If the
answer is yes, then it’s only a matter of getting the data and training
it. And this is, in some sense, the primary question. Can the model
represent a good solution to the problem?

There is a compelling argument that large, deep neural networks
should be able to represent very good solutions to perception prob‐
lems. It goes like this: human neurons are slow, and yet humans can
solve perception problems extremely quickly and accurately. If
humans can solve useful problems in a fraction of a second, then
you should only need a very small number of massively-parallel
steps in order to solve problems like vision and speech recognition.
This is an old argument—I’ve seen a paper on this from the early
eighties.

This suggests that if you train a large, deep neural network with ten
or 15 layers, on something like vision, then you could basically solve
it. Motivated by this belief, I worked with Alex Krizhevsky towards
demonstrating it. Alex had written an extremely fast implementa‐
tion of 2D convolutions on a GPU, at a time when few people knew
how to code for GPUs. We were able to train neural networks larger
than ever before and achieve much better results than anyone else at
the time.

Nowadays, everybody knows that if you want to solve a problem,
you just need to get a lot of data and train a big neural net. You
might not solve it perfectly, but you can definitely solve it better
than you could have possibly solved it without deep learning.

50 | Chapter 8: Ilya Sutskever: Unsupervised Learning, Attention, and Other Mysteries

Not to trivialize what you’re saying, but you say throw a lot of data at a
highly parallel system, and you’ll basically figure out what you need?

Yes, but: although the system is highly parallel, it is its sequential
nature that gives you the power. It’s true we use parallel systems
because that’s the only way to make it fast and large. But if you think
of what depth represents—depth is the sequential part.

And if you look at our networks, you will see that each year they are
getting deeper. It’s amazing to me that these very vague, intuitive
arguments turned out to correspond to what is actually happening.
Each year the networks that do best in vision are deeper than they
were before. Now we have twenty-five layer computational steps, or
even more depending on how you count.

What are the open problems, theoretically, in making deep learning as suc-
cessful as it can be?

The huge open problem would be to figure out how you can do
more with less data. How do you make this method less data-
hungry? How can you input the same amount of data, but better
formed?

This ties in with the one of greatest open problems in machine
learning—unsupervised learning. How do you even think about
unsupervised learning? How do you benefit from it? Once our
understanding improves and unsupervised learning advances, this is
where we will acquire new ideas, and see a completely unimaginable
explosion of new applications.

What’s our current understanding of unsupervised learning? And how is it
limited in your view?

Unsupervised learning is mysterious. Compare it to supervised
learning. We know why supervised learning works. You have a big
model, and you’re using a lot of data to define the cost—the training
error—which you minimize. If you have a lot of data, your training
error will be close to your test error. Eventually, you get to a low test
error, which is what you wanted from the start.

But I can’t even articulate what it is we want from unsupervised
learning. You want something; you want the model to under‐
stand...whatever that means. Although we currently understand very
little about unsupervised learning, I am also convinced that the
explanation is right under our noses.

Ilya Sutskever: Unsupervised Learning, Attention, and Other Mysteries | 51

Are you aware of any promising avenues that people are exploring towards
a deeper, conceptual understanding of why unsupervised learning does
what it does?

There are plenty of people trying various ideas, mostly related to
density modeling or generative models. If you ask any practitioner
how to solve a particular problem, they will tell you to get the data
and apply supervised learning. There is not yet an important appli‐
cation where unsupervised learning makes a profound difference.

Do we have any sense of what success means? Even a rough measure of how
well an unsupervised model performs?

Unsupervised learning is always a means for some other end. In
supervised learning, the learning itself is what you care about.
You’ve got your cost function, which you want to minimize. In
unsupervised learning, the goal is always to help some other task,
like classification or categorization. For example, I might ask a com‐
puter system to passively watch a lot of YouTube videos (so unsuper‐
vised learning happens here), then ask it to recognize objects with
great accuracy (that’s the final supervised learning task).

Successful unsupervised learning enables the subsequent supervised
learning algorithm to recognize objects with accuracy that would
not be possible without the use of unsupervised learning. It’s a very
measurable, very visible notion of success. And we haven’t achieved
it yet.

What are some other areas where you see exciting progress?

A general direction which I believe to be extremely important are
learning models capable of more sequential computations. I men‐
tioned how I think that deep learning is successful because it can do
more sequential computations than previous (“shallow”) models.
And so models that can do even more sequential computation
should be even more successful because they are able to express
more intricate algorithms. It’s like allowing your parallel computer
to run for more steps. We already see the beginning of this, in the
form of attention models.

And how do attention models differ from the current approach?

In the current approach, you take your input vector and give it to
the neural network. The neural network runs it, applies several pro‐
cessing stages to it, and then gets an output. In an attention model,

52 | Chapter 8: Ilya Sutskever: Unsupervised Learning, Attention, and Other Mysteries

you have a neural network, but you run the neural network for
much longer. There is a mechanism in the neural network, which
decides which part of the input it wants to “look” at. Normally, if the
input is very large, you need a large neural network to process it. But
if you have an attention model, you can decide on the best size of
the neural network, independent of the size of the input.

So then how do you decide where to focus this attention in the network?

Say you have a sentence, a sequence of say, 100 words. The attention
model will issue a query on the input sentence and create a distribu‐
tion over the input words, such that a word which is more similar to
the query will have higher probability, and words which are less
similar to the query will have lower probability. Then you take the
weighted average of them. Since every step is differentiable, we can
train the attention model where to look with backpropagation,
which is the reason for its appeal and success.

What kind of changes do you need to make to the framework itself? What
new code do you need to insert this notion of attention?

Well, the great thing about attention, at least differentiable attention,
is that you don’t need to insert any new code to the framework. As
long as your framework supports element-wise multiplication of
matrices or vectors, and exponentials, that’s all you need.

So attention models address the question you asked earlier: how do we
make better use of existing power with less data?

That’s basically correct. There are many reasons to be excited about
attention. One of them is that attention models simply work better,
allowing us to achieve better results with less data. Also bear in
mind that humans clearly have attention. It is something that ena‐
bles us to get results. It’s not just an academic concept. If you imag‐
ine a really smart system, surely, it too will have attention.

What are some of the key issues around attention?

Differentiable attention is computationally expensive because it
requires accessing your entire input at each step of the model’s oper‐
ation. And this is fine when the input is a sentence that’s only, say,
100 words, but it’s not practical when the input is a ten-thousand
word document. So one of the main issues is speed. Attention
should be fast, but differentiable attention is not fast. Reinforcement
learning of attention is potentially faster, but training attentional

Ilya Sutskever: Unsupervised Learning, Attention, and Other Mysteries | 53

control using reinforcement learning over thousands of objects
would be non-trivial.

Is there an analog, in the brain, as far as we know, for unsupervised
learning?

The brain is a great source of inspiration, if looked at correctly. The
question of whether the brain does unsupervised learning or not
depends to some extent on what you consider to be unsupervised
learning. In my opinion, the answer is unquestionably yes. Look at
how people behave, and notice that people are not really using
supervised learning at all. Humans never use any supervision of any
kind. You start reading a book, and you understand it, and all of a
sudden you can do new things that you couldn’t do before. Consider
a child, sitting in class. It’s not like the student is given lots of input/
output examples. The supervision is extremely indirect; so there’s
necessarily a lot of unsupervised learning going on.

Your work was inspired by the human brain and its power. How far does the
neuroscientific understanding of the brain extend into the realm of theoriz-
ing and applying machine learning?

There is a lot of value of looking at the brain, but it has to be done
carefully, and at the right level of abstraction. For example, our neu‐
ral networks have units which have connections between them, and
the idea of using slow interconnected processors was directly
inspired by the brain. But it is a faint analogy.

Neural networks are designed to be computationally efficient in
software implementations rather than biologically plausible. But the
overall idea was inspired by the brain, and was successful. For exam‐
ple, convolutional neural networks echo our understanding that
neurons in the visual cortex have very localized perceptive fields.
This is something that was known about the brain, and this infor‐
mation has been successfully carried over to our models. Overall, I
think that there is value in studying the brain, if done carefully and
responsibly.

54 | Chapter 8: Ilya Sutskever: Unsupervised Learning, Attention, and Other Mysteries

CHAPTER 9

Oriol Vinyals: Sequence-to-
Sequence Machine Learning

Oriol Vinyals is a research scientist at Google working on the Deep‐
Mind team by way of previous work with the Google Brain team. He
holds a Ph.D. in EECS from University of California, Berkeley, and a
Master’s degree from University of California, San Diego.

Key Takeaways
• Sequence-to-sequence learning using neural networks has

delivered state of the art performance in areas such as machine
translation.

• While powerful, such approaches are constrained by a number
of factors, including computational ones. LSTMs have gone a
long way towards pushing the field forward.

• Besides image and text understanding, deep learning models
can be taught to “code” solutions to a number of well-known
algorithmic challenges, including the Traveling Salesman
Problem.

Let’s start with your background.

I’m originally from Barcelona, Spain, where I completed my under‐
graduate studies in both mathematics and telecommunication engi‐
neering. Early on, I knew I wanted to study AI in the U.S. I spent

55

nine months at Carnegie Mellon, where I finished my undergradu‐
ate thesis. Afterward, I received my Master’s degree at UC San Diego
before moving to Berkeley for my Ph.D. in 2009.

While interning at Google during my Ph.D., I met and worked with
Geoffrey Hinton, which catalyzed my current interest in deep learn‐
ing. By then, and as a result of wonderful internship experiences at
both Microsoft and Google, I was determined to work in industry.
In 2013, I joined Google full time. My initial research interest in
speech recognition and optimization (with an emphasis on natural
language processing and understanding) gave way to my current
focus on solving these and other problems with deep learning,
including most recently, generating learning algorithms from data.

Tell me about your change in focus as you moved away from speech recogni-
tion. What are the areas that excite you the most now?

My speech background inspired my interest in sequences. Most
recently, Ilya Sutskever, Quoc Le and I published a paper on map‐
ping from sequences-to-sequences so as to enable machine transla‐
tion from French to English using a recurrent neural net.

For context, supervised learning has demonstrated success in cases
where the inputs and outputs are vectors, features or classes. An
image fed into these classical models, for example, will output the
associated class label. Until quite recently, we have not been able to
feed an image into a model and output a sequence of words that
describe said image. The rapid progress currently underway can be
traced to the availability of high quality datasets with image descrip‐
tions (MS COCO), and in parallel, to the resurgence of recurrent
neural networks.

Our work recast the machine translation problem in terms of
sequence-based deep learning. The results demonstrated that deep
learning can map a sequence of words in English to a corresponding
sequence of words in Spanish. By virtue of deep learning’s surprising
power, we were able to wrangle state-of-the-art performance in the
field rather quickly. These results alone suggest interesting new
applications, for example, automatically distilling a video into four
descriptive sentences.

Where does the sequence-to-sequence approach not work well?

Suppose you want to translate a single sentence of English to its
French analog. You might use a large corpus of political speeches

56 | Chapter 9: Oriol Vinyals: Sequence-to-Sequence Machine Learning

and debates as training data. A successful implementation could
then convert political speech into any number of languages. You
start to run into trouble though when you attempt to translate a sen‐
tence from, say, Shakespearean English, into French. This domain
shift strains the deep learning approach, whereas classical machine
translation systems use rules that make them resilient to such a shift.

Further complicating matters, we lack the computational resources
to work on sequences beyond a certain length. Current models can
match sequences of length 200 with corresponding sequences of
length 200. As these sequences elongate, longer runtimes follow in
tow. While we’re currently constrained to a relatively small universe
of documents, I believe we’ll see this limit inevitably relax over time.
Just as GPUs have compressed the turnaround time for large and
complex models, increased memory and computational capacity will
drive ever longer sequences.

Besides computational bottlenecks, longer sequences suggest inter‐
esting mathematical questions. Some years ago, Hochreiter intro‐
duced the concept of a vanishing gradient. As you read through
thousands of words, you can easily forget information that you read
three thousand words ago; with no memory of a key plot turn in
chapter three, the conclusion loses its meaning. In effect, the chal‐
lenge is memorization. Recurrent neural nets can typically memo‐
rize 10–15 words. But if you multiply a matrix fifteen times, the
outputs shrink to zero. In other words, the gradient vanishes along
with any chance of learning.

One notable solution to this problem relies on Long Short Term
Memory (LSTMs). This structure offers a smart modification to
recurrent neural nets, empowering them to memorize far in excess
of their normal limits. I’ve seen LSTMs extend as far as 300–400
words. While sizable, such an increase is only the start of a long
journey toward neural networks that can negotiate text of everyday
scale.

Taking a step back, we’ve seen several models emerge over the last
few years that address the notion of memory. I’ve personally experi‐
mented with the concept of adding such memory to neural net‐
works: Instead of cramming everything into a recurrent net’s hidden
state, memories let you recall previously seen words towards the
goal of optimizing the task at hand. Despite incredible progress in
recent years, the deeper, underlying challenge of what it means to

Oriol Vinyals: Sequence-to-Sequence Machine Learning | 57

represent knowledge remains, in itself, an open question. Neverthe‐
less, I believe we’ll see great progress along these lines in the coming
years.

Let’s shift gears to your work on producing algorithms. Can you share some
background on the history of those efforts and their motivation?

A classic exercise in demonstrating the power of supervised learning
involves separating some set of given points into disparate classes:
this is class A; this is class B, etc. The XOR (the “exclusive or” logical
connective) problem is particularly instructive. The goal is to “learn”
the XOR operation, i.e., given two input bits, learn what the output
should be. To be precise, this involves two bits and thus four exam‐
ples: 00, 01, 10 and 11. Given these examples, the output should be:
0, 1, 1 and 0. This problem isn’t separable in a way that a linear
model could resolve, yet deep learning matches the task. Despite
this, currently, limits to computational capacity preclude more com‐
plicated problems.

Recently, Wojciech Zaremba (an intern in our group) published a
paper entitled “Learning to Execute,” which described a mapping
from python programs to the result of executing those same pro‐
grams using a recurrent neural network. The model could, as a
result, predict the output of programs written in python merely by
reading the actual code. This problem, while simply-posed, offered a
good starting point. So, I directed our attention to an NP-hard prob‐
lem.

The algorithm in question is a highly complex and resource-
intensive approach to finding exactly the shortest path through all
the points in the famous Traveling Salesman Problem. Since its for‐
mulation, this problem has attracted numerous solutions that use
creative heuristics while trading off between efficiency and approxi‐
mation. In our case, we investigated whether deep learning system
could infer useful heuristics on par with existing literature using the
training data alone.

For efficiency’s sake, we scaled down to ten cities, rather than the
more common 10,000 or 100,000. Our training set input city loca‐
tions and output the shortest paths. That’s it. We didn’t want to
expose the network to any other assumptions about the underlying
problem.

58 | Chapter 9: Oriol Vinyals: Sequence-to-Sequence Machine Learning

A successful neural net should be able to recover the behavior of
finding a way to traverse all given points to minimize distance.
Indeed, in a rather magical moment, we realized it worked.

The outputs, I should note, might be slightly sub-optimal because
this is, after all, probabilistic in nature: But it’s a good start. We hope
to apply this method a range of new problems. The goal is not to rip
and replace existing, hand-coded solutions. Rather, our effort is
limited to replacing heuristics with machine learning.

Will this approach eventually make us better programmers?

Consider coding competitions. They kick off with a problem state‐
ment written in plain English: “In this program, you will have to
find A, B and C, given assumptions X, Y and Z.” You then code your
solution and test it on a server. Instead, imagine for a moment a
neural network that could read a such a problem statement in natu‐
ral language and afterwards learn an algorithm that at least approxi‐
mates the solution, and even perhaps returns it exactly. This
scenario may sound far-fetched. Bear in mind though, just a few
years ago, reading python code and outputting an answer that
approximates what the code returns sounded quite implausible.

What do you see happening with your work over the next five years? Where
are the greatest unsolved problems?

Perhaps five years is pushing it, but the notion of a machine reading
a book for comprehension is not too distant. In a similar vein, we
should expect to see machines that answer questions by learning
from the data, rather than following given rule sets. Right now, if I
ask you a question, you go to Google and begin your search; after
some number of iterations, you might return with an answer. Just
like you, machines should be able to run down an answer in
response to some question. We already have models that move us in
this direction on very tight data sets. The challenges going forward
are deep: How do you distinguish correct and incorrect answers?
How do you quantify wrongness or rightness? These and other
important questions will determine the course of future research.

Oriol Vinyals: Sequence-to-Sequence Machine Learning | 59

CHAPTER 10

Reza Zadeh: On the Evolution of
Machine Learning

Reza Zadeh is a consulting professor at the Institute for Computational
and Mathematical Engineering at Stanford University and a technical
advisor to Databricks. His work focuses on machine learning theory
and applications, distributed computing, and discrete applied mathe‐
matics.

Key Takeaways
• Neural networks have made a comeback and are playing a

growing role in new approaches to machine learning.
• The greatest successes are being achieved via a supervised

approach leveraging established algorithms.
• Spark is an especially well-suited environment for distributed

machine learning.

Tell us a bit about your work at Stanford.

At Stanford, I designed and teach distributed algorithms and opti‐
mization (CME 323) as well as a course called discrete mathematics
and algorithms (CME 305). In the discrete mathematics course, I
teach algorithms from a completely theoretical perspective, meaning
that it is not tied to any programming language or framework, and
we fill up whiteboards with many theorems and their proofs.

61

https://twitter.com/Reza_Zadeh
https://icme.stanford.edu/
https://icme.stanford.edu/
https://databricks.com/
http://stanford.edu/~rezab/dao/
http://stanford.edu/~rezab/dao/
http://stanford.edu/~rezab/classes/cme305/W15/
http://stanford.edu/~rezab/classes/cme305/W15/

On the more practical side, in the distributed algorithms class, we
work with the Spark cluster programming environment. I spend at
least half my time on Spark. So all the theory that I teach in regard
to distributed algorithms and machine learning gets implemented
and made concrete by Spark, and then put in the hands of thou‐
sands of industry and academic folks who use commodity clusters.

I started running MapReduce jobs at Google back in 2006, before
Hadoop was really popular or even known; but MapReduce was
already mature at Google. I was 18 at the time, and even then I could
see clearly that this is something that the world needs outside of
Google. So I spent a lot of time building and thinking about algo‐
rithms on top of MapReduce, and always worked to stay current,
long after leaving Google. When Spark came along, it was nice that
it was open-source and one could see its internals, and contribute to
it. I felt like it was the right time to jump on board because the idea
of an RDD was the right abstraction for much of distributed com‐
puting.

From your time at Google up to the present work you’re doing with Spark,
you have had the chance to see some of the evolution of machine learning
as it ties to distributed computing. Can you describe that evolution?

Machine learning has been through several transition periods start‐
ing in the mid-90s. From 1995–2005, there was a lot of focus on nat‐
ural language, search, and information retrieval. The machine
learning tools were simpler than what we’re using today; they
include things like logistic regression, SVMs (support vector
machines), kernels with SVMs, and PageRank. Google became
immensely successful using these technologies, building major suc‐
cess stories like Google News and the Gmail spam classifier using
easy-to-distribute algorithms for ranking and text classification—
using technologies that were already mature by the mid-90s.

Then around 2005, neural networks started making a comeback.
Neural networks are a technology from the 80s—some would even
date them back to the 60s—and they’ve become “retrocool” thanks
to their important recent advances in computer vision. Computer
vision makes very productive use of (convolutional) neural net‐
works. As that fact has become better established, neural networks
are making their way into other applications, creeping into areas like
natural language processing and machine translation.

62 | Chapter 10: Reza Zadeh: On the Evolution of Machine Learning

https://spark.apache.org/

But there’s a problem: neural networks are probably the most chal‐
lenging of all the mentioned models to distribute. Those earlier
models have all had their training successfully distributed. We can
use 100 machines and train a logistic regression or SVM without
much hassle. But developing a distributed neural network learning
setup has been more difficult.

So guess who’s done it successfully? The only organization so far is
Google; they are the pioneers, yet again. It’s very much like the scene
back in 2005 when Google published the MapReduce paper, and
everyone scrambled to build the same infrastructure. Google man‐
aged to distribute neural networks, get more bang for their buck,
and now everyone is wishing they were in the same situation. But
they’re not.

Why is an SVM or logistic regression easier to distribute than a neural net-
work?

First of all, evaluating an SVM is a lot easier. After you’ve learned an
SVM model or logistic regression model—or any linear model—the
actual evaluation is very fast. Say you built a spam classifier. A new
email comes along; to classify it as spam or not it takes very little
time, because it’s just one dot product (in linear algebra terms).
When it comes to a neural network, you have to do a lot more com‐
putation—even after you have learned the model—to figure out the
model’s output. And that’s not even the biggest problem. A typical
SVM might be happy with just a million parameters, but the small‐
est successful neural networks I’ve seen have around 6 million—and
that’s the absolutely smallest. Another problem is that the training
algorithms don’t benefit from much of optimization theory. Most of
the linear models that we use have mathematical guarantees on
when training is finished. They can guarantee when you have found
the best model you’re going to find. But the optimization algorithms
that exist for neural networks don’t afford such guarantees. You
don’t know after you’ve trained a neural network whether, given
your setup, this is the best model you could have found. So you’re
left wondering if you would have a better model if you kept on
training.

As neural networks become more powerful, do you see them subsuming
more and more of the work that used to be the bread and butter of linear
methods?

Reza Zadeh: On the Evolution of Machine Learning | 63

I think so, yes. Actually that’s happening right now. There’s always
this issue that linear models can only discriminate linearly. In order
to get non-linearities involved, you would have to add or change
features, which involves a lot of work. For example, computer vision
scientists spent a decade developing and tuning these things called
SIFT features, which enable image classification and other vision
tasks using linear methods. But then neural networks came along
and SIFT features became unnecessary; the neural network
approach is to make features automatically as part of the training.

But I think it’s asking for too much to say neural networks can
replace all feature construction techniques. I don’t think that will
happen. There will always be a place for linear models and good
human-driven feature engineering. Having said that, pretty much
any researcher who has been to the NIPS Conference is beginning to
evaluate neural networks for their application. Everyone is testing
whether their application can benefit from the non-linearities that
neural networks bring.

It’s not like we never had nonlinear models before. We have had
them—many of them. It’s just that the neural network model hap‐
pens to be particularly powerful. It can really work for some applica‐
tions, and so it’s worth trying. That’s what a lot of people are doing.
And when they see successes, they write papers about them. So far,
I’ve seen successes in speech recognition, in computer vision, and in
machine translation. It is a very wide array of difficult tasks, so there
is good reason to be excited.

Why is a neural network so powerful compared to the traditional linear and
nonlinear methods that have existed up until now?

When you have a linear model, every feature is either going to hurt
or help whatever you are trying to score. That’s the assumption
inherent in linear models. So the model might determine that if the
feature is large, then it’s indicative of class 1; but if it’s small, it’s indi‐
cative of class 2. Even if you go all the way up to very large values of
the feature, or down to very small values of the feature, you will
never have a situation where you say, “In this interval, the feature is
indicative of class 1; but in another interval it’s indicative of class 2.”

That’s too limited. Say you are analyzing images, looking for pictures
of dogs. It might be that only a certain subset of a feature’s values
indicate whether it is a picture of a dog, and the rest of the values for
that pixel, or for that patch of an image, indicate another class. You

64 | Chapter 10: Reza Zadeh: On the Evolution of Machine Learning

can’t draw a line to define such a complex set of relationships. Non‐
linear models are much more powerful, but at the same time they’re
much more difficult to train. Once again, you run into those hard
problems from optimization theory. That’s why for a long while we
thought that neural networks weren’t good enough, because they
would over-fit, or they were too powerful. We couldn’t do precise,
guaranteed optimization on them. That’s why they (temporarily)
vanished from the scene.

Within neural network theory, there are multiple branches and approaches
to computer learning. Can you summarize some of the key approaches?

By far the most successful approach has been a supervised approach
where an older algorithm, called backpropagation, is used to build a
neural network that has many different outputs.

Let’s look at a neural network construction that has become very
popular, called convolutional neural networks. The idea is that the
machine learning researcher builds a model constructed of several
layers, each of which handles connections from the previous layer in
a different way.

In the first layer, you have a window that slides a patch across an
image, which becomes the input for that layer. This is called a con‐
volutional layer because the patch “convolves”, it overlaps with itself.
Then several different types of layers follow. Each have different
properties, and pretty much all of them introduce nonlinearities.

The last layer has 10,000 potential neuron outputs; each one of those
activations correspond to a particular label which identifies the
image. The first class might be a cat; the second class might be a car;
and so on for all the 10,000 classes that ImageNet has. If the first
neuron is firing the most out of the 10,000 then the input is identi‐
fied as belonging to the first class, a cat.

The drawback of the supervised approach is that you must apply
labels to images while training. This is a car, this is a zoo, etc.

Reza Zadeh: On the Evolution of Machine Learning | 65

Right. And the unsupervised approach?

A less popular approach involves “autoencoders”, which are unsu‐
pervised neural networks. Here the neural network is not used to
classify the image, but to compress it. You read the image in the
same way I just described, by identifying a patch and feeding the
pixels into a convolutional layer. Several other layers then follow,
including a middle layer which is very small compared to the others.
It has relatively few neurons. Basically you’re reading the image,
going through a bottleneck, and then coming out the other side and
trying to reconstruct the image.

No labels are required for this training, because all you are doing is
putting the image at both ends of the neural network and training
the network to make the image fit, especially in the middle layer.
Once you do that, you are in possession of a neural network that
knows how to compress images. And it’s effectively giving you fea‐
tures that you can use in other classifiers. So if you have only a little
bit of labeled training data, no problem—you always have a lot of
images. Think of these images as non-labeled training data. You can
use images to build an autoencoder, then from the autoencoder pull
out features that are a good fit using a little bit of training data to
find the neurons in your autoencoded neural network that are sus‐
ceptible to particular patterns.

What got you into Spark? And where do you see that set of technologies
heading?

I’ve known Matei Zaharia, the creator of Spark, since we were both
undergraduates at Waterloo. And we actually interned at Google at
the same time. He was working on developer productivity tools,
completely unrelated to big data. He worked at Google and never
touched MapReduce, which was my focus—kind of funny given
where he ended up.

Then Matei went to Facebook, where he worked on Hadoop and
became immensely successful. During that time, I kept thinking
about distributing machine learning and none of the frameworks
that were coming out—including Hadoop—looked exciting enough
for me to build on top of because I knew from my time at Google
what was really possible.

Tell us a bit about what Spark is, how it works, and why it’s particularly use-
ful for distributed machine learning.

66 | Chapter 10: Reza Zadeh: On the Evolution of Machine Learning

Spark is a cluster computing environment that gives you a dis‐
tributed vector that works similar to the vectors you’re used to pro‐
gramming with on a single machine. You can’t do everything you
could with a regular vector; for example, you don’t have arbitrary
random access via indices. But you can, for example, intersect two
vectors; you can union; you can sort. You can do many things that
you would expect from a regular vector.

One reason Spark makes machine learning easy is that it works by
keeping some important parts of the data in memory as much as
possible without writing to disk. In a distributed environment, a
typical way to get fault resilience is to write to disk, to replicate a
disk across the network three times using HDFS.

What makes this suitable for machine learning is that the data can
come into memory and stay there. If it doesn’t fit in memory, that’s
fine too. It will get paged on and off a disk as needed. But the point
is while it can fit in memory, it will stay there. This benefits any pro‐
cess that will go through the data many times—and that’s most of
machine learning. Almost every machine learning algorithm needs
to go through the data tens, if not hundreds, of times.

Where do you see Spark vis-a-vis MapReduce? Is there a place for both of
them for different kinds of workloads and jobs?

To be clear, Hadoop as an ecosystem is going to thrive and be
around for a long time. I don’t think the same is true for the MapRe‐
duce component of the Hadoop ecosystem.

With regard to MapReduce, to answer your question, no, I don’t
think so. I honestly think that if you’re starting a new workload, it
makes no sense to start in MapReduce unless you have an existing
code base that you need to maintain. Other than that, there’s no rea‐
son. It’s kind of a silly thing to do MapReduce these days: it’s the dif‐
ference between assembly and C++. It doesn’t make sense to write
assembly code if you can write C++ code.

Where is Spark headed?

Spark itself is pretty stable right now. The biggest changes and
improvements that are happening right now and happening in the
next couple years are in the libraries. The machine learning library,
the graph processing library, the SQL library, and the streaming
libraries are all being rapidly developed, and every single one of
them has an exciting roadmap for the next two years at least. These

Reza Zadeh: On the Evolution of Machine Learning | 67

are all features that I want, and it’s very nice to see that they can be
easily implemented. I’m also excited about community-driven con‐
tributions that aren’t general enough to put into Spark itself, but that
support Spark as a community-driven set of packages. I think those
will also be very helpful to the long-tail of users.

Over time, I think Spark will become the de facto distribution
engine on which we can build machine learning algorithms, espe‐
cially at scale.

68 | Chapter 10: Reza Zadeh: On the Evolution of Machine Learning

http://spark-packages.org/

About the Author
David Beyer is an investor with Amplify Partners, an early-stage VC
fund focused on the next generation of infrastructure IT, data, and
information security companies. He began his career in technology
as the co-founder and CEO of Chartio, a pioneering provider of
cloud-based data visualization and analytics. He was subsequently
part of the founding team at Patients Know Best, one of the world’s
leading cloud-based personal health record companies.

	Strata San Jose
	Copyright
	Table of Contents
	Introduction
	Chapter 1. Anima Anandkumar: Learning in Higher Dimensions
	Chapter 2. Yoshua Bengio: Machines That Dream
	Chapter 3. Brendan Frey: Deep Learning Meets Genome Biology
	Chapter 4. Risto Miikkulainen: Stepping Stones and Unexpected Solutions in Evolutionary Computing
	Chapter 5. Benjamin Recht: Machine Learning in the Wild
	Chapter 6. Daniela Rus: The Autonomous Car As a Driving Partner
	Chapter 7. Gurjeet Singh: Using Topology to Uncover the Shape of Your Data
	Chapter 8. Ilya Sutskever: Unsupervised Learning, Attention, and Other Mysteries
	Chapter 9. Oriol Vinyals: Sequence-to-Sequence Machine Learning
	Chapter 10. Reza Zadeh: On the Evolution of Machine Learning
	About the Author

